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Abstract 20 
Functional ultrasound (fUS) imaging is rapidly gaining interest for its unprecedented ability to study large-21 
scale brain dynamics, yet its adoption and broader dissemination have been hindered by the lack of 22 
standardized tools and methodologies to analyze and interpret its rich datasets. We present OpenfUS 23 
Analyzer (OfUSA), a companion software suite designed to help researchers quickly engage with fUS data 24 
and perform the full range of analyses needed to generate publication-ready results and figures without 25 
relying on additional software. OfUSA offers a versatile and modular architecture including preprocessing, 26 
recording quality assessment, signal dynamics exploration, statistical analysis and visualization. These 27 
functions are separated yet easily combined into analytic pipelines through a programming-free graphical 28 
interface. The framework can be applied across species and experimental contexts, either by registering data 29 
to anatomical atlases, as shown here for the mouse brain, or by analyzing data without atlas constraints, as 30 
illustrated in a primate dataset. This flexibility, together with its comprehensive functionality, makes OfUSA a 31 
practical solution for standardized and reproducible analysis of fUS data in both preclinical and translational 32 
research. Using OfUSA, we demonstrate the capacity to detect stimulus-evoked responses with high 33 
sensitivity, identify their spatial localization within brain networks, and quantify both their extent and temporal 34 
dynamics. These results highlight the software’s ability to capture robust activation patterns and provide 35 
detailed insights into brain function, thereby accelerating the use of fUS as a powerful tool for systems 36 
neuroscience. 37 
 38 
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 43 
Highlights 44 
We present OpenfUS Analyzer (OfUSA), a novel software platform for the complete analysis of functional 45 
ultrasound (fUS) datasets. OfUSA combines a user-friendly graphical interface with a standardized, flexible 46 
workflow and powerful visualization tools, making it an ideal solution for fUS researchers at all experience 47 
levels. The software’s utility is first demonstrated through the analysis of rodent fUS data using a standardized 48 
atlas, while its versatility is further emphasized by the successful analysis of a primate fUS dataset without a 49 
template, thereby illustrating its adaptability to non-standard experimental conditions. 50 
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Introduction  51 
Imaging large-scale and in-depth brain activity in behaving rodents remains a significant challenge in 52 
neuroscience. Functional ultrasound imaging (fUS) overcomes many of these limitations by enabling 53 
measurements of hemodynamic responses across several cubic centimeters of brain tissue, with both high 54 
spatial and temporal resolution (around 100 μm³ and ~100 ms, respectively) in awake rodents (Brunner et 55 
al., 2020; Montaldo et al., 2022). In comparison, optical imaging and electrophysiological recordings are 56 
restricted to localized regions, while fMRI is hindered by lower spatiotemporal resolution and the frequent 57 
requirement for anesthesia. Although awake-rodent fMRI has been demonstrated (Brydges et al., 2013; King 58 
et al., 2005; Zhang et al., 2010), it remains technically demanding and uncommon.  59 
 60 
With the unique ability of fUS to capture large-scale activity across the awake brain, the increasing maturity 61 
of the technology, and its growing accessibility to the neuroscience community, there is a rising need for 62 
standardized and user-friendly tools to analyze fUS datasets. This need is driven by two main factors. First, 63 
the rapid expansion of fUS applications is generating a steadily increasing volume of data. fUS has already 64 
been applied to investigate the visual pathway (Brunner et al., 2020; Gesnik et al., 2017; É. Macé et al., 2018), 65 
tactile processing in whiskers (E. Macé et al., 2011), olfactory perception (B. F. Osmanski et al., 2014), 66 
resting-state dynamics (B.-F. Osmanski et al., 2014), stroke (Brunner et al., 2024, 2017; Hingot et al., 2020), 67 
pain (Claron et al., 2021), and drug effects (Rabut et al., 2020; Vidal, Droguerre, Valdebenito, et al., 2020; 68 
Vidal, Droguerre, Venet, et al., 2020). In addition, fUS is highly compatible with other techniques, such as 69 
optogenetic stimulation (Brunner et al., 2020; Rungta et al., 2017; Sans-Dublanc et al., 2021) and 70 
electrophysiological recordings (Lambert, Niknejad, et al., 2025; E. Macé et al., 2011; Nunez-Elizalde et al., 71 
2022; Sans-Dublanc et al., 2021), thereby enabling multimodal investigations of brain function. This breadth 72 
and diversity of applications require analytical pipelines that are not only standardized and reproducible but 73 
also flexible and adaptable while maintaining robustness. 74 
 75 
Second, there is a notable absence of open-source analysis software specifically tailored to the needs of fUS 76 
researchers. Although commercial scanners generally provide embedded software, these solutions are 77 
proprietary, limiting accessibility, transparency, and customization for the broader neuroscience community 78 
(Bertolo et al., 2021). Our OpenfUS initiative has recently introduced PyfUS, a collection of scripts and 79 
analysis tools designed to process fUS data at the voxel level (Lambert, Brunner, et al., 2025). While it 80 
provides valuable functionalities such as correlation and clustering analyses, its effective use requires users 81 
to set up a dedicated computing environment with the appropriate libraries and packages. As a result, 82 
adapting and operating PyfUS still demands considerable programming expertise, which restricts its 83 
accessibility for researchers without advanced computational skills. Existing open-source packages 84 
developed for fMRI, EEG, or optical imaging analysis also fail to meet the specific requirements of fUS. 85 
Despite sharing certain statistical methods, the preprocessing and visualization workflows differ substantially. 86 
For instance, fUS data lacks standardized quality control procedures, and many preprocessing steps used in 87 
fMRI are unnecessary for ultrasound signals. Similarly, registration methods designed for T1-, T2-, or EPI-88 
based rodent fMRI cannot be directly applied to Doppler images because of their distinct contrast properties 89 
(Brunner et al., 2021). Moreover, fUS researchers focus not only on activation maps but also on the temporal 90 
dynamics of hemodynamic responses and the visualization of barcode-like spatiotemporal patterns, which 91 
are less emphasized in fMRI workflows (Brunner et al., 2021, 2023; Lambert, Brunner, et al., 2025; É. Macé 92 
et al., 2018). Altogether, these limitations highlight the urgent need for an open-access, unified, and user-93 
friendly framework that combines standardization with flexibility and is explicitly designed for the analysis of 94 
fUS data. 95 
  96 
In this work, we introduce the OpenfUS Analyzer (OfUSA), an open-access software platform specifically 97 
developed to support researchers in preprocessing, statistical analyses, and visualizing fUS data. Expanding 98 
on scripts from our previous work (Brunner et al., 2021), OfUSA significantly enhances usability and 99 
scalability, enabling the processing of large datasets across multiple animals and experimental sessions. The 100 
software was designed with six core objectives that address critical needs of the neuroscience community: 101 
1) streamline fUS analysis workflows to lower technical barriers for researchers; 2) establish standardized 102 
and reproducible pipelines that ensure methodological rigor and comparability across studies; 3) maintain 103 
flexibility to support diverse experimental paradigms and species; 4) guarantee interoperability with 104 
established third-party software environments; 5) provide an intuitive, user-friendly graphical interface that 105 
makes advanced analyses accessible without programming expertise; and 6) integrate a comprehensive 106 
suite of visualization tools to enable in-depth exploration and interpretation of brain activity.  107 
 108 
To demonstrate its versatility across species, we illustrate the software’s application using datasets from 109 
rodents and non-human primates. Rodents were chosen as the primary example because they are the most 110 
widely used model in neuroscience, allowing readers to directly relate the workflow to their own research. In 111 
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this case, the analysis is supported by a standardized template, which provides additional anatomical and 112 
vascular information to aid in data interpretation. As a complementary example, we present a dataset from 113 
non-human primates, highlighting one of the key opportunities of fUS: its application to gyrencephalic brains 114 
that can serve as a bridge toward human translation. In this scenario, no standardized template is available 115 
and only part of the brain is accessible, thereby demonstrating how the software can accommodate conditions 116 
typical of larger-brain studies. Together, these examples showcase both the flexibility of the analysis pipeline 117 
and the depth of spatial and temporal information that can be extracted. 118 
 119 
To promote broader adoption and standardization of fUS, the software will be integrated into a web-based 120 
platform designed to serve as a global hub for the fUS community. This platform will streamline the entire 121 
workflow, from experimental design to advanced data analysis, while fostering collaboration, reproducibility, 122 
and innovation in brain research (Figure 1a). 123 
 124 
 125 

 126 
Figure 1. OpenfUS Web Portal and OfUSA Framework. 127 
This figure schematizes the workflow for functional ultrasound (fUS) research developed within the OpenfUS 128 
initiative. The left panel depicts the progression from scientific questions to final conclusions, with the initial 129 
and terminal phases relying on scientific expertise, and the intermediate stages requiring engineering 130 
expertise and substantial development efforts. The right panel displays the OpenfUS toolkit, which provides 131 
hardware specifications, experimental protocols, acquisition software, and analysis software to address the 132 
technical requirements of fUS research. Within this framework, OfUSA is introduced as a central software 133 
component, enabling standardized and user-friendly analysis and visualization of fUS data in rodent models. 134 
The standard workflow (bottom right) includes preprocessing, individual-level and group-level analyses, and 135 
visualization steps. 136 
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OfUSA Overview 137 
OfUSA is designed to analyze fUS datasets acquired from rodents or other animal models, capturing three 138 
spatial dimensions together with the temporal dynamics of cerebral blood flow. In practice, fUS data can be 139 
generated using different hardware configurations combining the transceiver, the ultrasound transducer, and 140 
the computing workstation. For clarity, this manuscript focuses on the most widely used setups: either a linear 141 
transducer with 128 channels or a matrix array with 1024 channels, enabling the acquisition of data restricted 142 
to a specific brain section (coronal or sagittal) or extending over a large portion of the rodent’s brain. Each 143 
voxel in an fUS dataset encodes a signal proportional to cerebral blood volume (CBV), which has been shown 144 
to correlate closely with underlying neuronal spiking activity (Lambert, Niknejad, et al., 2025; É. Macé et al., 145 
2018; Montaldo et al., 2022; Nunez-Elizalde et al., 2022), thereby providing a robust link between 146 
hemodynamic signals and neural function. 147 
 148 
The analysis aims to unveil the spatial information and the temporal information of hemodynamic response 149 
evoked by the external stimuli (task). The spatial information refers to the distribution of the activated regions 150 
that are induced by external stimuli. We can examine the activated region by estimating the signal change 151 
between the baseline period and the stimulated period in each brain voxel. By applying a threshold, we can 152 
generate an activation map that highlights the regions with significant signal change. The temporal 153 
information refers to the characteristic of the hemodynamic response (changes of cerebral blood volume) 154 
time course in the regions of interest (ROI), which includes the shape of time course, rising time and the peak 155 
amplitude. We can extract time courses by averaging time courses across all voxels in ROIs. The default 156 
ROIs are based on Allen Brain Atlas for rodent or researchers can customize the ROIs in the software. 157 
Although the spatial information and temporal information are independent aspects, in practice, we can 158 
examine the activation map first to identify the stimuli-related ROIs, then we delve into the temporal 159 
information of hemodynamic response in those specific ROIs.  160 
 161 

 162 
Figure 2. Graphical User Interface of OfUSA. 163 
The interface comprises three interactive panels for workflow management, process management, and data 164 
visualization. The top-left panel provides project management functions, including project setup, data loading, 165 
analysis creation, and the application of pipeline templates. The bottom-left panel manages process 166 
management, where analytical parameters are listed in a table and can be modified through corresponding 167 
input fields, selection menus, or file and directory dialogues. The right panel serves as the visualization area 168 
for displaying logs and data. 169 
 170 
To facilitate the analysis of spatial and temporal information without imposing a heavy technical burden, 171 
OfUSA was developed in MATLAB®, a programming environment widely used in academia, with licenses 172 
often provided at reduced cost or free of charge through institutional agreements. The software integrates a 173 
graphical user interface (GUI) that streamlines the entire analysis workflow (Figure 2). The interface is 174 
organized into three main components. The first is the project management panel, which handles the basic 175 
settings of the project, the organization of data and process libraries, and the construction of analysis 176 
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pipelines. A pipeline corresponds to a predefined sequence of processes that can be saved and reused, and 177 
several built-in pipeline templates are provided to help researchers quickly initiate their analyses. The second 178 
component is the process management panel, where users can edit process-specific parameters and assign 179 
datasets to be processed. Depending on the parameter type, inputs can be entered via text boxes, multi-180 
choice menus, or dedicated interfaces for selecting files and directories. The third component is the 181 
visualization panel, which allows researchers to monitor logs and flexibly display results. Users can adjust 182 
visualization settings, such as color bar range, thresholds, and colormaps, enabling tailored exploration and 183 
clear presentation of figures. 184 
 185 
To guarantee seamless compatibility with third-party software, OfUSA stores all processed data in the 186 
NIFTI+JSON format, a standard widely adopted in the neuroscience community. NIFTI was specifically 187 
developed for storing 3D and 4D medical images or matrices, providing an efficient and structured way to 188 
handle large volumetric datasets. Complementing this, JSON is a lightweight and human-readable format for 189 
metadata, organized as attribute–value pairs. Its simplicity ensures that metadata can be accessed and 190 
edited with any text editor, making it highly convenient for data sharing, reproducibility, and integration into 191 
diverse workflows. In addition, raw fUS data are organized according to the Brain Imaging Data Structure 192 
(BIDS), a community-driven standard for structuring neuroimaging datasets. The use of BIDS not only 193 
promotes transparency and reproducibility but also facilitates interoperability across research groups by 194 
enabling straightforward data exchange and large-scale collaborative analyses. The full list of metadata 195 
stored in the JSON files is detailed in Table S1. 196 
 197 
Individual and Group analysis 198 
The analysis workflow can be divided into two main stages, as illustrated in Figure 1. In the first stage, the 199 
fUS data for each trial is preprocessed independently to account for variability in system noise, physiological 200 
state, and animal movement. Because these sources of variability differ across trials, quality must be 201 
assessed and noise removed on a trial-by-trial basis (or at the session level when data are acquired with a 202 
linear transducer). This stage, referred to as the individual-level stage, includes three preprocessing steps: 203 
quality control, filtering, and registration. Quality control and filtering reduce the influence of artifacts 204 
generated by either the animal or the acquisition system, while registration aligns the fUS data to a reference 205 
atlas, such as the Allen Brain Atlas, ensuring consistent anatomical localization across sessions and subjects. 206 
Following preprocessing, individual-level analyses are conducted to generate activation maps and extract 207 
time courses from regions of interest (ROIs) for each trial or session. To increase efficiency, these procedures 208 
are implemented through batch processing, allowing multiple sessions or subjects to be analyzed 209 
simultaneously. 210 
 211 
The second stage investigates group-level effects by combining data across animals, sessions, and trials. At 212 
this level, statistical analyses are performed to characterize both fixed effects, representing stimulus-driven 213 
responses within the measured sample, and mixed effects, which generalize responses by accounting for 214 
inter-animal and inter-session variability. Group-level outputs include activation maps and ROI time courses 215 
derived from statistical approaches such as averaging and t-tests. Visualization tools integrated into the 216 
software further support interpretation, providing multislice displays, region-by-time plots, time course 217 
visualizations, and 3D renderings. 218 
 219 
Figure 3 illustrates the analytical workflow from the generation of individual activation maps and ROI time 220 
courses to their aggregation at the group level. Additional methodological details, including mathematical 221 
formulations used in this standardized pipeline, are provided in Appendix I, Section A. 222 
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 223 
Figure 3. Concept of individual- and group-level analyses. 224 
Each dataset provide two primary outputs: activation maps and regional time courses. Activation maps 225 
represent the spatial distribution of signal changes associated with external stimuli, whereas regional time 226 
courses describe the temporal profile of cerebral blood flow changes within defined regions of interest. The 227 
upper row illustrates the generation of (a) activation maps using regression analysis (general linear model) 228 
and (b) regional time courses obtained by averaging voxel signals within each region for individual trials. The 229 
lower row illustrates the derivation of (c) activation maps and (d) regional time courses at the group level. 230 
Group-level analyses can be performed using mean or median averaging to assess fixed effects, or by 231 
applying a t-test to evaluate mixed effects while accounting for variability across animals and sessions. 232 
 233 
Application Example 1: Large-Scale Mapping of Evoked Brain Activity in Mice 234 
 235 
1.1 Experimental setup 236 
This multi-sensory experiment involved a wild-type mouse across eight imaging sessions. During each 237 
session, the mice were presented with two types of 5-second stimuli in a randomized order: a visual 238 
checkerboard and a tactile comb stimulation to the right whisker pad. Each stimulus condition was repeated 239 
20 times within a 30-second trial structure that included a baseline (10s / 20 frames), stimulation (5s / 10 240 
frames), and recovery period (15s / 30 frames) . A high-quality anatomical image (refers to a high resolution 241 
vascular images) was also acquired in each session for registration. Figure 4a-b depicts the mouse 242 
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experimental setup and the stimulus. Further details on the experimental setup are provided in Appendix II, 243 
Section A.  244 
 245 

 246 
Figure 4. Experimental setups and results for the rodent study. 247 
Panel (a) shows the experimental setup for the sensory-evoked stimulation, with visual stimulation delivered 248 
through an LCD monitor positioned 20 cm in the right side of the animal and tactile stimulation applied to the 249 
right whiskers using a custom made comb. Panel (b) specifies the stimuli: a 2 Hz flickering checkerboard and 250 
a 0.7 cm comb deflection, each lasting 5 seconds, with before a baseline of 10s and after a recovery period 251 
of 15s. Panel (c) presents region-by-time plots of time courses across multiple brain regions. Panel (d) 252 
displays representative time courses for visual regions (VISp-L, SCs-L, orange) and somatosensory regions 253 
(SSp-bfd-L, SSs-L, blue). Panel (e) shows the group-level activation maps. Reported activations are 254 
statistically significant according to a one-sample t-test (T > 5.4, p < 0.001 uncorrected, df = 7, two-tailed). 255 
  256 
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 257 
1.2 Analysis Workflow 258 
For the analysis of multi-sensory data, we utilized the standardized workflow provided by OfUSA, which is 259 
structured into two main stages: the individual-level stage and the group-level stage. The analysis began at 260 
the individual-level stage (Figure S1a), where data was processed on a trial-by-trial basis to obtain an 261 
average effect for each session. Subsequently, the group-level stage examined the random effects across 262 
these sessions to account for inter-session variability and produce corresponding statistical inferences 263 
(Figure S1b). This two-stage procedure effectively constitutes a mixed-effects model, allowing for the study 264 
of generalizable effects by incorporating session-to-session variability. 265 
 266 
1.2.1 Realignment 267 
Prior to this two-stage analysis, all data were registered to the Allen Brain Atlas to ensure spatial alignment 268 
across sessions. We performed this alignment using the "registration ABA" process within the software. This 269 
process employed high-quality anatomical images to estimate the transformation matrix required to map each 270 
individual's native space to the common Allen Brain Atlas space. Figure S1c illustrates the manual 271 
registration interface used for this purpose. 272 
 273 
1.2.2 Individual Level Analysis 274 
Figure S1a presents the individual-level analysis pipeline, which is organized into four main components: 275 
initiation, preprocessing, temporal information analysis, and spatial information analysis. 276 
 277 
The initiation component consists of three processes: “Loop Pipeline,” “Set Parameters,” and “Regressor.” 278 
The “Loop Pipeline” process defines the data units for each iteration of the batch process (e.g., subject, 279 
session, stimulus). Unlike in rodent studies, image data and regressors are selected within each loop. When 280 
multiple units, such as several subjects or sessions, are specified, the pipeline generates a corresponding 281 
number of independent processing loops (Figure S1d). The “Set Parameters” process specifies the regions 282 
of interest (ROIs) derived from the Allen Brain Atlas and assigns names to the experimental stimuli. In this 283 
study, 82 cortical and subcortical regions associated with multisensory processing were used, which, when 284 
divided by hemisphere, yielded 164 ROIs (Table S2). The “Regressor” process defines the experimental 285 
paradigm, including the onset of the stimulus (frame 20), duration (10 frames), and the expected shape of 286 
the time course (Figure S1e). 287 
 288 
Table 1. Accepted trials and rejection rates of all data as determined by quality control. 289 
AnimalID SessionID TaskID Total Number Accepted 

Trial Number 
Rejected  
Trial Number 

Reject Rate 

M221108 

6IA4MV 
V 30 19 11 36.70% 
W 30 22 8 26.70% 

6OGYGK 
V 20 15 5 25.00% 
W 20 15 5 25.00% 

6R1GXD 
V 15 11 4 26.70% 
W 25 20 5 20.00% 

6RJFFT 
V 15 14 1 6.70% 
W 25 22 3 12.00% 

6SMC7V 
V 20 16 4 20.00% 
W 20 17 3 15.00% 

6UMOP5 
V 20 19 1 5.00% 
W 20 20 0 0.00% 

6W74FL 
V 20 19 1 5.00% 
W 20 19 1 5.00% 

71U30T 
V 20 12 8 40.00% 
W 20 12 8 40.00% 

Total 
V 160 125 35 21.88% 
W 180 147 33 18.33% 

Abbreviation: [V] denotes the visual stimulation, [W] denotes the whisker stimulation 290 
 291 
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The preprocessing component includes quality control and filtering. During quality control, each trial is 292 
validated against thresholds to ensure robustness against motion artifacts and global noise while meeting 293 
minimal Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) requirements. The thresholds 294 
applied were: TH_BurstError = 200%, TH_noisyvoxel = 50%, TH_SNR = 5, TH_CNR = 0.2, TH_CM = 70%, 295 
and TH_por = 90% (definitions provided in Appendix I, Section A). OfUSA automatically generates a quality 296 
control report (Table 1), indicating the number of preserved and rejected trials. Using these criteria, 22% of 297 
visual trials and 18% of whisker trials were excluded. In the filtering step, the two principal components 298 
explaining the highest variance were removed to suppress residual global fluctuations. Each preprocessing 299 
step was conducted independently for data corresponding to the two stimuli. 300 
 301 
The temporal information analysis component applies the “Segmentation ABA” process to perform region-302 
by-time analyses. Using the regressors and ROI definitions specified during initiation, trial-specific time 303 
courses were extracted for each ROI (illustrated in Figure 3b). These trial-level time courses were then 304 
averaged across all trials within a session to generate a single representative time course per session (Figure 305 
S1d). 306 
 307 
The spatial information analysis component employs a general linear model (GLM) at the voxel level to 308 
compute beta-value activation maps for each trial (illustrated in Figure 3a). Individual beta maps were then 309 
averaged across trials to yield a session-level activation map. Finally, this average beta map was transformed 310 
from the subject’s native space to the Allen Brain Atlas space using the pre-estimated transformation matrix. 311 
 312 
1.2.3 Group Level Analysis 313 
In the group-level stage, random effects were estimated for both ROI time courses and activation maps by 314 
performing one-sample t-tests across sessions. The group-level analysis pipeline, illustrated in Figure S1b, 315 
is organized into three main components: initiation, temporal information analysis, and spatial information 316 
analysis. 317 
 318 
The initiation component begins with the “Select Data” process, where the session-averaged time courses 319 
and activation maps obtained during the individual-level stage are selected for group analysis (via an interface 320 
similar to Figure S1d). In the subsequent “Set Parameters” process, the relevant ROIs from the Allen Brain 321 
Atlas are specified, and labels are assigned to each experimental condition (e.g., “visual,” “whisker”). 322 
 323 
For the temporal information analysis, the “Group T-test” process evaluates the significance of hemodynamic 324 
responses at each time point within every ROI. This is achieved by computing t-statistics across all sessions, 325 
thereby identifying time windows with consistent activation patterns. The outcomes are visualized using the 326 
“Barcode View” and “Time Course View,” which highlight temporal dynamics at the ROI level. Figures 4c–d 327 
and S2a–d illustrate representative region-by-time plots for visual cortical areas during stimulation tasks. 328 
 329 
For the spatial information analysis, a t-test is applied to the beta maps across sessions to generate a group-330 
level activation map, identifying brain regions showing statistically significant responses to the stimulus 331 
across the cohort. These maps are visualized using the “Mosaic View,” which produces multislice 332 
representations of the activation patterns (Figures 4e and S2e–f), and the “Regions Report,” which compiles 333 
a comprehensive summary of significantly activated brain regions (Table 2). 334 
 335 
1.3 Results 336 
The group-level activation maps, together with the corresponding statistical reports, identified distinct brain 337 
regions showing significant responses to each sensory stimulus (one-sample t-test; T > 5.4, p < 0.001 338 
uncorrected, df = 7, two-tailed). These results are presented in Figures 4e and S2e–f, with detailed 339 
information provided in Table 2. 340 
 341 
Visual stimulation produced strong contralateral activation in regions well established for visual processing 342 
and sensory integration. Significant responses were observed in the Superior Colliculus (SCs, SCi), the 343 
primary and secondary visual cortices (VISp, VISl, VISpm), the Dorsal Lateral Geniculate nucleus (dLG), and 344 
the Retrosplenial cortex (RSP) (Hooks & Chen, 2020; Powell et al., 2020). 345 
 346 
Whisker stimulation also evoked a robust contralateral response. Significant activation was detected along 347 
the canonical somatosensory pathway, including the primary and secondary somatosensory cortices (SSp-348 
bf, SSs), the Ventral Posterior complex of the thalamus (VP), and the Posterior complex of the thalamus (PO). 349 
Beyond this core network, additional activation was observed in the Superior Colliculus (SCs, SCi), the Dorsal 350 
Lateral Geniculate nucleus (dLG), the rostrolateral visual area (VISrl), and the dorsal auditory cortex (AUDd). 351 
The recruitment of the primary somatosensory network aligns with the tactile nature of the whisker stimulus 352 
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(Staiger & Petersen, 2021), while the involvement of subcortical structures such as the Superior Colliculus is 353 
consistent with evidence of their role in integrating non-visual sensory inputs (Benavidez et al., 2021). The 354 
additional activation observed in VISrl, AUDd, and dLG is less expected and may reflect experimental 355 
confounds, such as auditory noise generated by the stimulation device or visual detection of the whisker 356 
stimulator’s movement by the animal. 357 
 358 
Table 2. Activated area of sensory stimulation in the rodent study.  359 
Stimulation ROI_name volume Portion Peak Value  Peak coordinate(mm)  
  (mm3) (%) T-Value LR AP DV 
Visual SCi-L 0.32 15.70 19.16 -1.00 1.85 -1.50 
 SCs-L 0.46 42.90 18.58 -1.15 2.65 -2.50 
 VISl-L 0.04 6.60 12.91 -3.60 2.65 -2.50 
 VISp-L 0.31 8.60 23.35 -2.00 2.75 -2.65 
 VISpm-L 0.04 7.10 12.39 -1.40 1.85 -2.85 
 dLG-L 0.04 10.70 12.42 -2.35 1.15 -0.95 
 RSP-L 0.37 7.10 27.42 -1.45 2.95 -2.70 
        

Whisker AUDd-L 0.14 22.60 13.66 -4.40 0.45 -1.10 
 PO-L 0.09 14.60 20.82 -1.65 0.90 -0.45 
 SSp-bf-L 0.95 30.10 29.74 -3.40 0.25 -1.45 
 SSs-L 0.48 10.50 18.40 -3.70 0.80 -2.00 
 VP-L 0.20 13.90 19.20 -1.90 0.80 -0.20 
 SCi-L 0.22 10.60 21.57 -1.50 2.90 -1.90 
 SCs-L 0.17 15.50 14.29 -1.20 2.75 -2.30 
 VISrl-L 0.04 8.10 14.00 -2.60 0.65 -2.85 
 dLG-L 0.05 12.70 10.26 -2.15 1.10 -0.60 
Activated areas satisfied a statistical threshold of a one-sample t-test (T > 5.4, p < 0.001 uncorrected, df = 7, 360 
two-tailed). The 'Volume' column indicates the size of the activated cluster, and the 'Portion' column 361 
represents this cluster size as a fraction of the total ROI volume. Full names for all ROI abbreviations are 362 
provided in Table S2. 363 
 364 
1.4 Summary 365 
In summary, this demonstration presents a two-stage workflow for analyzing brain activity in response to 366 
visual and whisker stimulation, using a rodent atlas for spatial registration. First, data from each session is 367 
preprocessed at an individual level to extract hemodynamic response time courses and activation maps. 368 
Second, these metrics are consolidated for a group-level statistical analysis using t-tests. This method 369 
successfully revealed clear hemodynamic responses and activation maps in the relevant brain areas—370 
specifically, visual stimuli activated the SCs and VISp, while whisker stimulation activated the SSp-bf and 371 
SSs. 372 
 373 
Application Example 2: Visual responses in an awake non-human primate  374 
 375 
2.1 Experiment Setup 376 
This study was conducted on a single male rhesus macaque trained to perform a passive fixation task for 377 
liquid reward. The animal was head-fixed and positioned in a sphinx posture, with its hands placed inside a 378 
box to reduce motion. During the task, the monkey fixated on a central point displayed on a high-resolution 379 
screen. While fixation was maintained, a large, colorful checkerboard stimulus was presented for 8 seconds 380 
at a flickering frequency of 10 Hz. Data were acquired in runs of approximately 18 minutes, each consisting 381 
of about 18 trials. Figures 5a–b illustrate the experimental setup and stimulus. Additional details are provided 382 
in Appendix II, Section B. 383 
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 384 
Figure 5. Experimental setups and results for the primate study. 385 
Panel (a) shows the setup for the visual experiment, in which the subject was surgically implanted with a 386 
headpost and a recording chamber to enable stable head fixation while seated in the sphinx position. The 387 
fUS transducer was mounted on the recording chamber for data acquisition. Panel (b) illustrates the visual 388 
task, consisting of an 8-second presentation of a colorful checkerboard on a 32-inch screen positioned 40 389 
cm away, with the subject receiving rewards on a fixed schedule for maintaining fixation on a central point. 390 
Panel (c) presents region-by-time plots of time courses across multiple brain regions. Panel (d) displays 391 
representative time courses for visual regions (V4d, orange; V3a, blue). Panel (e) shows the group-level 392 
activation maps. Reported activations are statistically significant according to a fixed-effects analysis (T > 393 
5.27, p < 0.05 FWE-corrected, df = 4850, two-tailed). 394 
 395 
2.2 Analysis Workflow 396 
Because no standardized fUS template exists for non-human primates, the analysis workflow was adapted 397 
to incorporate a custom study-specific template. This template was constructed by co-registering all sessions 398 
into a common anatomical space, enabling automatic alignment of individual datasets. The subsequent 399 
analysis followed the two-stage workflow described earlier. Given the limited number of sessions available, 400 
a fixed-effects model was employed at the group level, allowing the estimation of the average stimulus effect 401 
within the measured sample, rather than a generalizable random effect across sessions. 402 
 403 
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Trial structures for each run were specified in behavioral files formatted in JSON. These files contained 404 
detailed parameters for each stimulus event, including name, onset frame, duration, and expected time 405 
course. Table S3 provides a complete description of these parameters. 406 
 407 
2.2.1 Study-Specific Template and ROI Definition 408 
In the absence of a standard anatomical template for cross-session alignment, two strategies were evaluated. 409 
The first approach involved selecting a single session’s anatomical image as a reference. Although simple, 410 
this method risks introducing bias if the chosen session is not representative, potentially compromising the 411 
alignment of the remaining data. To overcome this limitation, a second and more robust strategy was adopted: 412 
generating a study-specific template by integrating anatomical images from all sessions. While more 413 
computationally demanding, this method reduces bias and improves cross-session registration accuracy. 414 
 415 
The study-specific template was created using the “Data-driven Template ” process, illustrated in Figure S3a 416 
and detailed in Appendix I, Section B. An initial template was generated by averaging anatomical images 417 
from all sessions. Each session’s image (Figure S3b) was then aligned to this template using the MATLAB 418 
imregtform function. The aligned images were averaged to form an updated template, and this cycle of 419 
registration and averaging was repeated ten times to obtain a refined consensus template (Figure S3c). 420 
Finally, the resulting template was manually registered to the CHARM Macaque Brain Atlas (Jung et al., 421 
2021), enabling integration into a standard coordinate framework and facilitating the definition of regions of 422 
interest (ROIs) (Figure S3d). 423 
 424 
2.2.2 Individual-Level Analysis 425 
The individual-level analysis pipeline for the primate dataset is illustrated in Figure S3e. Similar to the rodent 426 
workflow, it comprises four main components: initiation, preprocessing, temporal analysis, and spatial 427 
analysis. 428 
 429 
The initiation component included two processes: “Loop Pipeline” and “Select Data.” In the “Loop Pipeline” 430 
process, the batch processing units (e.g., subject, session, stimulus) and their corresponding behavioral 431 
regressors were defined. In the “Select Data” process, the study-specific template (Figure S3c) and its 432 
associated regions of interest (ROIs) (Figure S3d) were specified for subsequent analyses. 433 
 434 
The preprocessing component consisted of three steps: “Quality Control,” “Filtering,” and “Realignment.” 435 
Quality control was conducted using the same thresholds as in the rodent study to detect and exclude trials 436 
with burst errors. All datasets passed this stage, likely reflecting the effectiveness of pre-experimental training 437 
in reducing head motion. Filtering was then applied by removing the two principal components with the 438 
highest variance to suppress residual global fluctuations. Finally, the “Realignment” process automatically 439 
registered the functional data to the study-specific template. This step corrects for minor inter-session 440 
misalignments (up to ~10% of the field of view) but is not designed to address severe distortions. 441 
 442 
For temporal and spatial analyses, ROI time courses were extracted using the “Extract Timecourse” process 443 
and averaged across trials within each session using the “Average Across Data” process, yielding one 444 
representative time course per session. In parallel, a General Linear Model (GLM) was applied to each run 445 
through the “GLM Analysis” process, producing beta maps and corresponding variance maps. Because the 446 
GLM incorporated all trials within a session, each beta map represents the average stimulus-evoked 447 
response for that session and was subsequently used in the group-level analysis. 448 
 449 
2.2.3 Group-Level Analysis 450 
At the group level, a fixed-effects analysis was performed to calculate the average ROI time courses and 451 
activation maps across all sessions. The group-level pipeline, shown in Figure S3f, included three primary 452 
components: initiation, temporal analysis, and spatial analysis. 453 
 454 
The initiation stage consisted of three “Select Data” processes and one “Set Parameters” process. The first 455 
three processes specified the session-level ROI time courses, the corresponding activation maps, and the 456 
study-specific template with its ROIs. In the “Set Parameters” process, the experimental condition was 457 
labeled as “checkerboard.” 458 
 459 
For temporal analysis, the “Average Across Data” process was used to compute the mean hemodynamic 460 
response across all sessions for each ROI and time point. These responses were visualized with the 461 
“Barcode View” and “Time Course View,” enabling a clear representation of stimulus-evoked activity. Figures 462 
5c–d show the resulting region-by-time plots summarizing the average response to the checkerboard 463 
stimulus. 464 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.16.676515doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.16.676515
http://creativecommons.org/licenses/by-nc/4.0/


 13 

 465 
For spatial analysis, the “Fixed Effect Analysis” process combined the beta maps from all sessions to 466 
generate a group-level activation map. This map identifies brain regions consistently activated by the stimulus 467 
across the dataset. The final results were visualized using the “Mosaic View” to produce multislice 468 
representations of activation (Figure 5e) and the “Regions Report” process to compile a summary table of 469 
significantly activated regions (Table 3). 470 
 471 
2.3 Results 472 
The group-level activation maps and ROI time courses revealed distinct regions of significant activation in 473 
response to the checkerboard stimulus. Results are shown in Figures 5c–e and Table 3. Statistical 474 
thresholds were set at p < 0.05, Family-Wise Error (FWE) corrected (fixed-effects; T > 5.27, df = 4850, two-475 
tailed). 476 
 477 
Quantitative analysis identified the strongest responses in visual areas V4d and V3a, which exhibited signal 478 
changes of approximately 3–5% and maximum T-values of 36.78 and 16.85, respectively. Additional 479 
significant activation was observed in areas MST and 7a, showing signal changes of around 2% with 480 
maximum T-values of 17.79 and 23.49, respectively. 481 
 482 
These findings are consistent with previous reports describing the involvement of both ventral and dorsal 483 
visual streams in processing structured visual stimuli, in particular checkerboard-like patterns that drive 484 
responses in areas V4d, V3a, 7a, and MST (Arcaro & Livingstone, 2017; D. C. Van Essen et al., 1992; David 485 
C. Van Essen & Maunsell, 1983). Robust activation in V4d, a core region of the ventral stream, aligns with 486 
its established role in processing contrast and edges. Engagement of the dorsal stream was reflected in V3a, 487 
which contributes to processing global visual forms, and in area 7a, which integrates visual information for 488 
visuomotor functions. By contrast, the weaker activation in MST is consistent with its specialization in optic 489 
flow processing, which was not a primary feature of the stimulus. 490 
 491 
Overall, the results reveal a dominant involvement of the ventral visual stream, associated with object 492 
recognition, and a more transient contribution of the dorsal stream, consistent with its role in dynamic visual 493 
integration. 494 
 495 
Table 3. Activated area of checkerboard stimulation in the monkey study. 496 
Stimulation ROI_name volume Portion Peak Value  Peak coordinate(mm) of native space  
  (mm3) (%) T-Value LR AP DV 
Checkerboard MST 9.60 19.10 17.79 -2.25 0.00 2.00 
 7a 21.57 10.40 23.49 0.60 -1.35 -1.20 
 V4d 57.81 53.70 36.79 -3.90 -3.60 -3.20 
 V3a 3.58 20.40 16.85 0.30 -4.80 1.80 
 497 
Activated areas satisfied a statistical threshold from a fixed-effects analysis (T > 5.27, p < 0.05, FWE-498 
corrected, df = 4850, two-tailed). Full names for ROI abbreviations are provided in Table S4. 499 
 500 
2.4 Summary 501 
This demonstration presents a full workflow for analyzing stimulus-evoked activity in the primate visual cortex. 502 
The approach begins with the construction of a study-specific template to achieve robust alignment across 503 
sessions, followed by a two-stage statistical procedure. At the first level, individual analyses extract 504 
hemodynamic time courses and activation maps from preprocessed data. At the second level, a group fixed-505 
effects analysis integrates these outputs to reveal consistent activation patterns. The results clearly 506 
demonstrate stimulus-driven activation in key regions of the ventral (V4d) and dorsal (V3a) visual streams. 507 
 508 
Rationale and Justification of the Proposed Workflow 509 
 510 
3.1 Advantages 511 
This paper introduces OfUSA, an open-source and open-access software package for the analysis of 512 
functional ultrasound (fUS) data. OfUSA addresses critical methodological needs in the fUS research 513 
community and provides several distinctive advantages. 514 
 515 
First, OfUSA is designed for accessibility. It incorporates a comprehensive graphical user interface (GUI) that 516 
makes the software usable by researchers with or without programming experience. As illustrated in Figures 517 
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2 and S1c–e, the GUI streamlines essential tasks such as data management, image registration, and the 518 
creation of experimental regressors. The visualization interface further enables users to interactively adjust 519 
parameters, generate figures, and apply statistical thresholds with ease. 520 
 521 
Second, OfUSA establishes a standardized yet flexible workflow. The pipeline covers the entire analytical 522 
process, from preprocessing to statistical analysis and visualization, ensuring consistency and reproducibility. 523 
Built-in statistical tools support both spatial activation mapping and temporal hemodynamic response analysis 524 
at individual and group levels. While this framework enforces methodological rigor, it also allows parameter 525 
adjustments (e.g., thresholds, preprocessing settings) to accommodate diverse experimental paradigms. Its 526 
batch-processing capacity further enables efficient analysis of large-scale datasets across sessions and 527 
animals. 528 
 529 
Third, OfUSA prioritizes compatibility and extensibility. Data are stored in widely adopted NIFTI and JSON 530 
formats, ensuring interoperability with established third-party tools. As an open-source project, OfUSA also 531 
invites contributions from the scientific community, encouraging integration of new methods and continuous 532 
evolution of the software in parallel with advances in the field. 533 
 534 
Fourth, OfUSA provides advanced visualization capabilities. A set of integrated toolboxes (Section 3.5) 535 
enables researchers to explore and communicate findings using multiple complementary perspectives on 536 
brain activity, including spatial, temporal, and spatiotemporal representations. 537 
 538 
Together, these advantages establish OfUSA as a complete, end-to-end solution for modern fUS research. 539 
The following sections further justify the methodological choices of the workflow, including preprocessing, 540 
modeling of the hemodynamic response, fixed- versus random-effects analyses, visualization strategies, and 541 
current limitations. 542 
 543 
3.2 Preprocessing 544 
Preprocessing is a critical step in fUS analysis, aimed at reducing noise and minimizing confounding 545 
influences. Although fUS measures cerebral blood volume (CBV), insights can be drawn from fMRI studies 546 
of the BOLD signal, where motion (48%) and physiological fluctuations (31%) account for a large portion of 547 
variance (Liu et al., 2017). 548 
 549 
A unique challenge in fUS is burst noise, typically arising from motion, which can exceed baseline signal 550 
amplitude by several orders of magnitude (Brunner et al., 2021). This can be mitigated behaviorally, through 551 
animal training to reduce head movement (as shown in our primate study), and computationally, through 552 
OfUSA’s preprocessing steps. Quality control and filtering are central to this process: quality control identifies 553 
and rejects corrupted trials, while filtering suppresses residual global fluctuations. 554 
 555 
To evaluate preprocessing strategies, four conditions were compared: standard (quality control and filtering), 556 
no preprocessing, quality control only, and filtering only. Analyses of activation maps and time courses 557 
(Figures S4–S5) revealed that the standard pipeline reduced spurious activations and minimized cross-trial 558 
variance, though with slightly lower raw signal amplitude. Filtering without prior quality control induced 559 
negative artifacts, a well-documented risk when global components are removed in the presence of strong 560 
burst noise (Aguirre et al., 1998). These results confirm that filtering is most effective when preceded by 561 
quality control. 562 
 563 
Performance was further quantified using SNR, CNR, and d-prime (d′), revealing species-dependent effects. 564 
The standard pipeline produced significantly higher SNR in rodents, while “QC only” provided meaningful 565 
improvements in primates but not in rodents. Filtering alone degraded metrics in rodents while partially 566 
improving CNR and d′ in primates, likely reflecting differences in burst noise prevalence. 567 
 568 
The choice of preprocessing strategy significantly impacts fUS data quality, with the most robust approach 569 
being a combination of quality control (QC) and filtering. Since optimal parameters vary by experiment, the 570 
following guidelines should serve as a starting point. For the QC step, recommended ranges are a burst error 571 
threshold between 200-400%, an SNR threshold between 5-10, and a CNR threshold between 0.5-2. 572 
Applying stricter criteria—such as a burst error threshold below 200% or using higher SNR/CNR thresholds—573 
selects for better quality data. This enhances statistical power, meaning fewer trials are needed to detect the 574 
same signal change. However, the trade-off is that stricter criteria may also lead to a high rejection rate of 575 
trials. In contrast, a relatively relaxed common noise threshold (0.6 to 0.8) is sufficient, as the subsequent 576 
filtering process will effectively remove residual common mode effects. 577 
 578 
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During the PCA-based filtering process, we recommend removing up to three principal components. The 579 
effectiveness of this choice can be easily diagnosed. If the resulting activation map shows widespread 580 
negative activations, it is likely that too many components have been removed. Conversely, if a region-by-581 
time plot reveals highly synchronized patterns across the brain, often appearing as vertical stripes, it suggests 582 
too few components were removed and residual common noise persists. These parameters should be 583 
adjusted based on such diagnostic checks to best suit the specific characteristics of your dataset. 584 
 585 
3.3 Hemodynamic Response Function 586 
OfUSA provides tools to estimate hemodynamic response functions (HRFs) across brain regions, leveraging 587 
fUS’s high spatial and temporal resolution. Results (Figures 4d, 5d, S4b, S5b) demonstrate that HRFs vary 588 
substantially between regions, consistent with prior work (Brunner et al., 2020; Lambert, Niknejad, et al., 589 
2025; É. Macé et al., 2018; Sans-Dublanc et al., 2021). 590 
 591 
This heterogeneity challenges conventional fMRI approaches that assume a uniform canonical HRF. Such 592 
assumptions risk underestimating activation strength, inflating error rates, and biasing connectivity estimates 593 
(Handwerker et al., 2012, 2004; Rangaprakash et al., 2018). OfUSA avoids this by employing paradigm-594 
based regressors in GLM analyses without convolving with a canonical HRF, yielding direct and unbiased 595 
activation estimates. Future extensions could integrate empirical HRF modeling to further refine region-596 
specific neurovascular dynamics. 597 
 598 
3.4 Fixed versus Random Effects 599 
Both fixed- and random-effects models are implemented in OfUSA. Random-effects models generalize 600 
findings across populations by accounting for variability across subjects or sessions, as demonstrated in our 601 
rodent dataset. Fixed-effects models, in contrast, assess the average effect within the measured sample only, 602 
as shown in the primate dataset. 603 
 604 
While random-effects models offer broader generalizability, their adoption in fUS research is limited by the 605 
logistical challenges of large sample sizes, given the surgical and training demands of animal preparation. 606 
For smaller cohorts, fixed-effects analyses remain appropriate. As fUS adoption grows and larger datasets 607 
become available, increased use of random-effects models is anticipated. 608 
 609 
3.5 Visualization 610 
OfUSA integrates four visualization tools: multislice (mosaic) view, 3D rendering, region-time view, and time-611 
course view. These tools allow flexible exploration of spatial, temporal, and spatiotemporal data. 612 
 613 
The multislice view generates brain-wide activation maps overlaid on reference templates or native-space 614 
images. Reports include peak strength, coordinates, and activation volume (Tables 2–3). The 3D rendering 615 
tool, currently implemented for the mouse brain, projects activation strength onto brain surfaces, with optional 616 
ROI overlays for contextual interpretation (Video S1-S2). 617 
 618 
The region-time view presents barcode-like spatiotemporal plots of regional responses, while the time-course 619 
view enables interactive exploration of response dynamics in single or multiple ROIs. Both tools support 620 
customizable ROI selection and ordering. 621 
 622 
These visualization options provide complementary insights but require careful parameter choices, 623 
particularly for thresholds and color scales. To ensure transparency and reproducibility, all visualization 624 
parameters should be reported alongside figures. 625 
 626 
3.6 Limitations 627 
The current version of OfUSA has limitations that highlight directions for future improvement. 628 
 629 
Firstly, it currently relies on manual registration and lacks a tool for correcting brain distortion, as robust 630 
automated registration algorithms are not yet widely available. However, OfUSA's modular architecture is 631 
designed to seamlessly integrate such tools once they are developed. Secondly, the quality control process 632 
requires manual threshold selection because optimal parameters vary with the experimental setup and 633 
paradigm. This limitation is expected to be resolved as the growing adoption of fUS technology provides the 634 
large datasets needed to build more sophisticated and adaptive methods. Finally, limitations inherited from 635 
its MATLAB environment, such as license costs and potential for slow performance, are also addressed. The 636 
cost barrier is lowered by ensuring compatibility with the free MATLAB Runtime environment, while 637 
performance is continuously improved through code optimization and the option to use the Parallel 638 
Computing Toolbox. 639 
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 640 
Conclusions 641 
OfUSA provides a unified, open-source platform for preprocessing, analyzing, and visualizing fUS data. Its 642 
GUI-based interface lowers the barrier for researchers without programming expertise while preserving 643 
methodological rigor and flexibility. Demonstrations on rodent and primate datasets highlight its strengths in 644 
preprocessing, spatial and temporal analysis, and visualization. 645 
 646 
By addressing critical analytical bottlenecks, OfUSA supports broader adoption of fUS in neuroscience. It 647 
reduces the reliance on specialized coding expertise, facilitates reproducible workflows, and enables 648 
researchers to explore whole-brain activity in awake animals with greater efficiency. As part of the OpenfUS 649 
initiative, OfUSA represents a major step toward accelerating collaborative, large-scale, and translational fUS 650 
research. 651 
 652 
Data availability 653 
Dataset used in this work are available on a Zenodo repository at:  654 
https://doi.org/10.5281/zenodo.17130250  655 
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Code availability 657 
OfUSA software can be found and downloaded from the GitHub repository: 658 
https://github.com/YunAnGitHub/OpenfUS_Analyzer_OfUSA .  659 
 660 
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License 664 
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Appendix I 692 
 693 
A. Process of the standardized workflow 694 
This standardized analyzing workflow that was adapted from our previously published procedures (Brunner 695 
et al., 2021; É. Macé et al., 2018). The workflow comprises two stages, the individual stage and group stage. 696 
In the former stage, we process all the data independently (trial-by-trial or session-by-session). Specifically, 697 
we preprocess the data and analyze the data for generating the activation map and extracting the ROIs’ 698 
hemodynamic time course. In the latter stage, we group all the individual results together for generating the 699 
group-level activation map and time courses of ROIs. We also visualize the final results in this stage. In the 700 
following section, we introduce the formula of all process we used in the standardized analyzing workflow. 701 
 702 
a. Individual Stage 703 
a.1. Preprocessing 704 
a.1.1. Quality Control 705 
 706 
Quality control consists of four criteria: burst error, temporal Signal-to-Noise Ratio (tSNR), Contrast-to-Noise 707 
Ratio, and common mode.  708 

 709 
a.1.1.1. Burst Error 710 
An artifact commonly observed in functional ultrasound imaging is the burst error. This artifact manifests as 711 
a sudden and large signal across the image, primarily caused by the movement of the imaged object. To 712 
measure the burst error, we use the ratio of the peak value to the average baseline signal in the scan period. 713 
Mathematically, this can be expressed as: 714 

 715 
I(x,y,z,t) denotes the 4D images, where  I:ℝ𝑋𝑋×𝑌𝑌×𝑍𝑍×𝑇𝑇,  x ∈ X, y ∈ Y, z ∈ Z, t ∈ T.  X, Y, Z, and T represent the 716 
range of images in the X, Y, Z directions, and the total length of timepoints, respectively. 717 

  718 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)  =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)) 719 

 720 

BurstErrorRatio(x, y, z) =
max�I(x, y, z, t)�
Baseline(x, y, z)

 721 

 722 
 723 

To control the burst error, we have introduced two thresholds: the burst error threshold (THbursterror) and the 724 
noisy voxel threshold (THnoisyvoxels). The THbursterror is used to estimate the voxels affected by the burst error, 725 
while the THnoisyvoxels is used to estimate the cover rate of burst error voxels in a trial. By applying a mask to 726 
remove the noisy voxels, we accept the trials only if the number of noisy voxels does not exceed the 727 
THnoisyvoxels. The mask and the accepted trials can be represented as follows: 728 
 729 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  �
0, 𝑖𝑖𝑖𝑖 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≥ 𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
1, 𝑖𝑖𝑖𝑖 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧) < 𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 730 

 731 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃) =  

⎩
⎪⎪
⎨

⎪⎪
⎧0, 𝑖𝑖𝑖𝑖 � (1 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧))

𝑥𝑥=𝑋𝑋,𝑦𝑦=𝑌𝑌,𝑧𝑧=𝑍𝑍

𝑥𝑥=1,𝑦𝑦=1,𝑧𝑧=1

≥ 𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍 ∗ 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

1, 𝑖𝑖𝑖𝑖 � (1 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧))
𝑥𝑥=𝑋𝑋,𝑦𝑦=𝑌𝑌,𝑧𝑧=𝑍𝑍

𝑥𝑥=1,𝑦𝑦=1,𝑧𝑧=1

< 𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍 ∗ 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

,∀𝜃𝜃 ∈ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 732 

 733 
where  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denotes the total number of trials. 734 
 735 
 736 
a.1.1.2. temporal Signal-to-Noise Ratio (tSNR) 737 
The tSNR (temporal signal-to-noise ratio) is a useful indicator for estimating the amount of noise fluctuation 738 
relative to the signal. In general, a higher level of noise leads to a lower tSNR. To obtain a reliable signal, 739 
researchers often need to increase the number of trials to better control the noise level in the group stage. 740 
Therefore, tSNR helps researchers estimate the minimum number of trials required to ensure the reliability 741 
of the measured signal. 742 

 743 
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The global tSNR is calculated by dividing the standard deviation of baseline fluctuation (noise) by the average 744 
intensity of the signal (signal) for each voxel. Mathematically, it can be expressed as: 745 

 746 

𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)𝑡𝑡∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
,∀ 𝑡𝑡 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,∀ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ (𝑋𝑋,𝑌𝑌,𝑍𝑍). 747 

𝜎𝜎𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �∑ �𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧)�𝑡𝑡∈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1

,∀ 𝑡𝑡 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,∀ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ (𝑋𝑋,𝑌𝑌,𝑍𝑍). 748 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.  749 
 750 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)𝑡𝑡∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
,∀ 𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,∀ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ (𝑋𝑋,𝑌𝑌,𝑍𝑍). 751 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 752 
 753 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
∑ �

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜎𝜎𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∗ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧)�𝑥𝑥=𝑋𝑋,𝑦𝑦=𝑌𝑌,𝑧𝑧=𝑍𝑍

𝑥𝑥=1,𝑦𝑦=1,𝑧𝑧=1

∑ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑥𝑥=𝑋𝑋,𝑦𝑦=𝑌𝑌,𝑧𝑧=𝑍𝑍
𝑥𝑥=1,𝑦𝑦=1,𝑧𝑧=1

 754 

  755 
Notably, we computed the global tSNR without including the noisy voxels identified through the burst error 756 
criteria. This allowed us to obtain a more accurate estimation of the true tSNR, unaffected by burst errors. 757 

 758 
To ensure that the data was not influenced by high levels of noise, we introduced a signal-to-noise ratio 759 
threshold (THSNR). Trials were deemed valid if the tSNR value exceeded this threshold. This can be expressed 760 
as follows: 761 

 762 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃) =  �
0, 𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 <  𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆
1, 𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥  𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆

  ,∀ 𝜃𝜃 ∈ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 763 

 764 
 765 

a.1.1.3. Contrast-to-Noise Ratio (CNR) 766 
The CNR (Contrast-to-Noise Ratio) is an indicator that measures the ratio between the signal change 767 
associated with stimulation and the noise level. While the tSNR reflects the reliability of the signal, the CNR 768 
reflects the reliability of the measured signal change. Furthermore, the CNR is directly related to the 769 
probability of observing clear hemodynamic curves from the time course 770 

 771 
The global CNR is estimated by considering the standard deviation of baseline fluctuation (noise), the 772 
average intensity of the stimulation signal (signal), and the average intensity of the baseline signal (baseline) 773 
for each voxel. Mathematically, it can be expressed as: 774 

 775 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝜎𝜎𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
 776 

 777 
Since not all voxels are associated with the given stimuli, we consider the CNR from the top percentage (PCNR) 778 
of voxels, which can be described as the percentile of CNR. 779 
 780 
Since not all voxels are associated with the given stimuli, we consider the CNR from the top percentage (PCNR) 781 
of voxels, which can be described as the percentile of CNR (PCNR). 782 

 783 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝 =   (1 − 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶) 𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 784 

 785 
For example,  PCNR = 5% means that the top 5% of CNR voxels would be considered. CNRp denotes the 95th 786 
percentile of CNR. Furthermore, we can define the global CNR and the accepted trials with a CNR threshold 787 
(THCNR) as follows: 788 
 789 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍

 ,∀ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) > 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝 790 

 791 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) =  �
0, 𝑖𝑖𝑖𝑖  𝐶𝐶𝐶𝐶𝐶𝐶 <  𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶
1, 𝑖𝑖𝑖𝑖  𝐶𝐶𝐶𝐶𝐶𝐶 ≥  𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶

   ,∀ 𝜃𝜃 ∈ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 792 
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 793 
a.1.1.4. Common Mode 794 
The common mode refers to the presence of correlated fluctuations throughout the brain, such as those 795 
caused by respiratory rate, heart rate, pupil size, and awareness. These fluctuations can also be caused by 796 
confounding factors such as movements or system noise from the imaging technique. While global signal 797 
filtering can be used to remove common fluctuations after quality control, this filtering is only effective for 798 
moderate levels of common mode fluctuation. Therefore, it is crucial for researchers to be aware of the level 799 
of common mode fluctuation in their data. If trials contain severe common mode fluctuation, they should be 800 
excluded from analysis because the global signal filtering doesn’t work well in this case.  801 
 802 
To efficiently estimate common mode fluctuation, we propose a rapid and computationally efficient method. 803 
We divide the entire brain volume into smaller subblocks of equal size, designated as Nblock x Nblock x 804 
Nblock. For instance, Nblock = 10 represents a grid size of 10, resulting in a total of 1000 subblocks. Next, 805 
we calculate the pairwise correlation between these subblocks and estimate the common mode level using 806 
two thresholds: the common mode correlation threshold (THCM) and the common mode portion threshold 807 
(THpor). The formula for this calculation is as follows: 808 

 809 

𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖(𝑡𝑡) =  
∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)(𝑥𝑥,𝑦𝑦,𝑧𝑧)∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍
∗ 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3,∀ 𝑖𝑖 ∈ 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3 810 

𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗) =

⎩
⎨

⎧1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖(𝑡𝑡), 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗(𝑡𝑡) � ≥ 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶,∀ 𝑖𝑖 ≠ 𝑗𝑗

0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖(𝑡𝑡), 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗(𝑡𝑡) � < 𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶,∀ 𝑖𝑖 ≠ 𝑗𝑗
0,∀ 𝑖𝑖 = 𝑗𝑗

   , 𝑡𝑡 ∈ 𝑇𝑇 811 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶(𝜃𝜃) =  

⎩
⎪
⎨

⎪
⎧

0, 𝑖𝑖𝑖𝑖  
∑ 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)𝑖𝑖= 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3,𝑗𝑗=𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

3

𝑖𝑖=1,𝑗𝑗=1

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏6 − 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3
≥  𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝

1, 𝑖𝑖𝑖𝑖  
∑ 𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)𝑖𝑖= 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3,𝑗𝑗=𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

3

𝑖𝑖=1,𝑗𝑗=1

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏6 − 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3
<  𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝

   ,∀ 𝜃𝜃 ∈ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 812 

 813 
where  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑓𝑓(𝑡𝑡),𝑔𝑔(𝑡𝑡)�  refers to the Pearson' s correlation coefficient of timecourse 𝑓𝑓(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑡𝑡). 814 
 815 
a.1.1.5. Integration of four criteria 816 
 817 
Finally, a trial would be deemed acceptable if it fulfills all four criteria. Accepted trials would be listed as 818 
follows: 819 

 820 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝜃𝜃) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜃𝜃) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶(𝜃𝜃)  ,∀ 𝜃𝜃 ∈ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 821 

 822 
a.1.2. Filtering 823 
To eliminate the common mode fluctuation described earlier, we implemented a global signal filtering method 824 
based on principal component analysis (PCA). Since the global fluctuations are significantly larger than the 825 
hemodynamic response, removing these global fluctuations allows us to uncover the underlying activation 826 
patterns associated with local neural activity. We constructed the common mode fluctuation from the first Nth 827 
components and subsequently subtracted this common mode fluctuation from the time course of each voxel. 828 

 829 
To optimize computational efficiency, we first transform the 4D image I(x, y, z, t) into a 2D matrix I(m, t) using 830 
a rearrangement function 𝒯𝒯. 831 

 832 
𝐼𝐼(𝑚𝑚, 𝑡𝑡) = 𝒯𝒯{𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)},𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝒯𝒯:ℝ𝑋𝑋×𝑌𝑌×𝑍𝑍×𝑇𝑇 → ℝ𝑀𝑀×𝑇𝑇 , 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇,𝑚𝑚 ∈ 𝑀𝑀,𝑀𝑀 = 𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍 834 
 835 

 833 
Utilizing the built-in principal component analysis (PCA) function pca in MATLAB , we can represent I(m, t) 836 
as the product of the score matrix (S) and coefficient matrix I. 837 

 838 
𝐼𝐼(𝑚𝑚, 𝑡𝑡) = 𝑆𝑆(𝑚𝑚,𝑛𝑛) ∗ 𝐶𝐶(𝑡𝑡,𝑛𝑛)Τ 839 

 840 
where 𝐼𝐼:ℝ𝑀𝑀×𝑇𝑇 , 𝑆𝑆: ℝ𝑀𝑀×𝑁𝑁 ,𝐶𝐶:ℝ𝑇𝑇×𝑁𝑁 ,𝑁𝑁 is the number of components, Τ denotes transpose of a matrix 841 

 842 
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Denoting the signal reconstructed from the first Nth components as PCAN, we can formulate the filtered data 843 
by subtracting PCAN from the original data: 844 

 845 

𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁(𝑚𝑚, 𝑡𝑡) = �𝑆𝑆(𝑚𝑚, 𝑛𝑛) ∗ 𝐶𝐶(𝑡𝑡,𝑛𝑛)Τ
𝑁𝑁

𝑛𝑛=1

 846 

 847 
𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚, 𝑡𝑡) = 𝐼𝐼(𝑚𝑚, 𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁(𝑚𝑚, 𝑡𝑡) 848 

 849 
𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =  𝒯𝒯−1�𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚, 𝑡𝑡)� 850 

 851 
where  𝒯𝒯−1:ℝ𝑀𝑀×𝑇𝑇 → ℝ𝑋𝑋×𝑌𝑌×𝑍𝑍×𝑇𝑇 , 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇,𝑚𝑚 ∈ 𝑀𝑀,𝑀𝑀 = 𝑋𝑋 ∗ 𝑌𝑌 ∗ 𝑍𝑍 852 
 853 
a.1.3. Registration  854 
The final step in the preprocessing stage involves estimating the transformation matrix to align the brain 855 
volume from native space to the Allen Brain Atlas Common Coordinate Framework (ABA CCF). Researchers 856 
can utilize a graphical user interface (GUI) to estimate the nine parameters of the affine transformation matrix. 857 
These parameters encompass the shifts in left-right (LR), anterior-posterior (AP), and dorsal-ventral (DV) 858 
directions, rotations along the LR, AP, and DV axes, and scaling along the LR, AP, and DV directions. This 859 
registration interface, initially introduced in our previous publications (Brunner et al., 2021), has been 860 
seamlessly integrated into the OfUSA framework. 861 

 862 
The registration process 𝒯𝒯𝐴𝐴𝐴𝐴𝐴𝐴 and the resulting affine transformation matrix 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 can be represented by the 863 
following formula: 864 

 865 
𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴(𝓍𝓍,𝓎𝓎,𝓏𝓏, 𝑡𝑡) =  𝒯𝒯𝐴𝐴𝐴𝐴𝐴𝐴{𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)} =  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 866 

 867 
where  𝒯𝒯𝐴𝐴𝐴𝐴𝐴𝐴:ℝ𝑋𝑋×𝑌𝑌×𝑍𝑍×𝑇𝑇 → ℝ𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴×𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴×𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴×𝑇𝑇 , 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇,𝓍𝓍 ∈ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴, 𝓎𝓎 ∈ 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴, 𝓏𝓏 ∈ 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴 . 868 
𝑋𝑋,𝑌𝑌,𝑍𝑍 denotes the native space and 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴,  𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴, 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴  denotes Allen Brain Atlas space. 869 

 870 
    𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑥𝑥(𝜃𝜃𝑥𝑥) ∗ 𝑅𝑅𝑦𝑦�𝜃𝜃𝑦𝑦� ∗ 𝑅𝑅𝑧𝑧(𝜃𝜃𝑧𝑧) ∗ 𝐷𝐷𝑥𝑥(𝑑𝑑𝑥𝑥) ∗ 𝐷𝐷𝑦𝑦(𝑑𝑑𝑦𝑦) ∗ 𝐷𝐷𝑧𝑧(𝑑𝑑𝑧𝑧) 871 
 872 

where each of rotation and transition matrix could be written as: 873 

𝑅𝑅𝑥𝑥(𝜃𝜃𝑥𝑥) =  �

1 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑥𝑥)

0 0
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃𝑥𝑥) 0

0 −𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃𝑥𝑥)
0 0

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑥𝑥) 0
0 1

�, 𝐷𝐷𝑥𝑥(𝑑𝑑𝑥𝑥) =  �

1 0
0 1

0 0
0 0

0 0
𝑑𝑑𝑥𝑥 0

1 0
0 1

�  874 

 𝑅𝑅𝑦𝑦�𝜃𝜃𝑦𝑦� =  �

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑦𝑦) 0
0 1

𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃𝑦𝑦) 0
0 0

−𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃𝑦𝑦) 0
0 0

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑦𝑦) 0
0 1

�, 𝐷𝐷𝑦𝑦�𝑑𝑑𝑦𝑦� =  �

1 0
0 1

0 0
0 0

0 0
0 𝑑𝑑𝑦𝑦

1 0
0 1

�  875 

  876 

 𝑅𝑅𝑧𝑧(𝜃𝜃𝑧𝑧) =  �

cos(𝜃𝜃𝑧𝑧) sin(𝜃𝜃𝑧𝑧)
− sin(𝜃𝜃𝑧𝑧) cos(𝜃𝜃𝑧𝑧)

0 0
0 0

0 0
0 0

1 0
0 1

� , 𝐷𝐷𝑧𝑧(𝑑𝑑𝑧𝑧) =  �

1 0
0 1

0 0
0 0

0 0
0 0

1 0
𝑑𝑑𝑧𝑧 1

� 877 

 878 
The matrix 𝑅𝑅𝑥𝑥(𝜃𝜃𝑥𝑥),  𝑅𝑅𝑦𝑦�𝜃𝜃𝑦𝑦�, 𝑅𝑅𝑧𝑧(𝜃𝜃𝑧𝑧), 𝐷𝐷𝑥𝑥(𝑑𝑑𝑥𝑥),  𝐷𝐷𝑦𝑦�𝑑𝑑𝑦𝑦�, and 𝐷𝐷𝑧𝑧(𝑑𝑑𝑧𝑧) can be obtained by employing the provided 879 
registration interface to manually determine the rotation angle and transition level.   880 
 881 
a.2. Individual-level analysis   882 
a.2.1. Activation map analysis  883 

 884 
To determine the activation map, we employed the general linear model (GLM) to quantify the signal change 885 
elicited by the stimulus in each voxel. By evaluating the signal change across all voxels in the brain, we 886 
generated an activation map representing the spatial distribution of stimulus response. 887 

 888 
The time course of a voxel is denoted by  𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧(𝑡𝑡) and can be represented as the sum of the stimulus-related 889 
activation (Ireg), error term I, and a constant baseline bias I (Friston et al., 1994):  890 

 891 
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 𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧(𝑡𝑡) =  𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡),𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍  892 
 893 

 𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧(𝑡𝑡) =  𝛽𝛽(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∗ 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐶𝐶, 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇   894 
  895 

where 𝛽𝛽 denotes the signal of each voxel and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 denotes the ideal activation pattern. 896 
 897 
The 𝛽𝛽(𝑥𝑥,𝑦𝑦, 𝑧𝑧) represents the signal change of the response in a voxel to a specific stimulus condition. It is 898 
calculated by solving the linear regression equation. Define the Q matrix by combining the Ireg and the 899 
constant term C. 900 

 901 

𝑄𝑄 =  �
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(1) 𝐶𝐶

⋮ ⋮
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇) 𝐶𝐶

�      902 

 903 
[ 𝛽𝛽(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ,𝛽𝛽𝐶𝐶] =  (𝑄𝑄Τ𝑄𝑄)−1𝑄𝑄Τ𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧  , for ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍 904 

 905 
where 𝛽𝛽𝐶𝐶  denotes the baseline bias, Τ denotes transpose of a matrix, and 𝑄𝑄: ℝ𝑇𝑇×2, 𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧: ℝ𝑇𝑇×1 906 
 907 
The variance matrix, denoted as 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑧𝑧), represents the variance in the GLM analysis for a given voxel. 908 
It’s calculated using mean square error (MSE) and degree of freedom (DOF) from the analysis.  909 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =
(𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧(𝑡𝑡) − 𝑄𝑄 ∗ 𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑧𝑧))𝑇𝑇(𝐼𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧(𝑡𝑡) − 𝑄𝑄 ∗ 𝛽𝛽(𝑥𝑥,𝑦𝑦, 𝑧𝑧))

𝐷𝐷𝐷𝐷𝐷𝐷
 910 

𝑉𝑉𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∗ (𝑄𝑄Τ𝑄𝑄)−1 911 
 912 
It is important to note that the GLM can accommodate multiple regressors, including multiple stimuli or other 913 
confounding factors such as animal movements. However, due to the simplicity of the paradigm in this study, 914 
we did not utilize these additional regressors. This functionality could be implemented in the future. Secondly, 915 
unlike fMRI studies that often employ an ideal paradigm convolved with an impulse response function, also 916 
known as the canonical hemodynamic response function, derived from the gamma function (Penny et al., 917 
2007), we did not implement any impulse response function in this study. This is because the shape of the 918 
hemodynamic response exhibits significant variation across regions and stimuli. While the impulse response 919 
function is an important concept, measuring the empirical impulse response function for each region and 920 
stimulus is not the primary objective of this study. Moreover, incorporating the empirical impulse response 921 
function would have only a limited impact on the simple paradigm we demonstrate in this work. 922 

 923 
Once we obtained the activation map 𝛽𝛽(𝑥𝑥,𝑦𝑦, 𝑧𝑧), we mapped it to the Allen Brain Atlas (ABA) Space using the 924 
transformation matrix obtained in the preprocessing step. 925 

 926 
𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴(𝓍𝓍,𝓎𝓎,𝓏𝓏) =  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝛽𝛽(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 927 

 928 
where   𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇,𝓍𝓍 ∈ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴, 𝓎𝓎 ∈ 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴, 𝓏𝓏 ∈ 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴.  This step was performed using the built-in 929 
MATLAB function imwarp.  930 
 931 
a.2.2. Region-time analysis 932 
To efficiently compute the time course of different regions, we developed an algorithm that minimizes 933 
computational burden. Instead of the computationally demanding approach of wrapping the entire 4D matrix 934 
I(x, y, z, t) to the Allen Brain Atlas (ABA) space and averaging the signal of voxels within regions, our algorithm 935 
directly calculates the coordinates of the regions in the native space. This is achieved using the inverse 936 
transform function, transformPointsInverse, built-in in MATLAB, along with linear interpolation to align the 937 
inverse transform function with the native space. By directly computing the time course of each region in its 938 
native space, we significantly reduce computational demands while maintaining accurate time course 939 
measurements.  940 

 941 
We denote the Mask𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴 as the voxels of ith regions of Allen Brain Atlas and denote Mask𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 as the voxels 942 
of ith regions of Allen Brain Atlas in the native space. The measurement of time course of ith region ( Ii(t)) can 943 
be written as: 944 
 945 

 Mask𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝓍𝓍,𝓎𝓎,𝓏𝓏) =  �
1,   𝑖𝑖𝑖𝑖 𝓍𝓍,𝓎𝓎,𝓏𝓏 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) 
0,   𝑖𝑖𝑖𝑖 𝓍𝓍,𝓎𝓎,𝓏𝓏 ∉ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖) 

,∀ 𝑖𝑖 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴  946 
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 947 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼{ 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴−1Mask𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝓍𝓍,𝓎𝓎,𝓏𝓏)} 948 

        949 

𝐼𝐼𝑖𝑖(𝑡𝑡) =
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∘ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝑥𝑥=𝑋𝑋,𝑦𝑦=𝑌𝑌,𝑧𝑧=𝑍𝑍
𝑥𝑥=1,𝑦𝑦=1,𝑧𝑧=1

𝑁𝑁𝑥𝑥,𝑦𝑦,𝑧𝑧∈𝑋𝑋,𝑌𝑌,𝑍𝑍
 950 

 951 
Where  𝓍𝓍 ∈ 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴, 𝓎𝓎 ∈ 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴, 𝓏𝓏 ∈ 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇 ,  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴−1 denotes inverse transform function, 952 
Intp denotes the trilinear interpolation, “ ∘  “ denotes Hadamard product (element-wise product), and 953 
𝑁𝑁𝑥𝑥,𝑦𝑦,𝑧𝑧∈𝑋𝑋,𝑌𝑌,𝑍𝑍 denotes the number of voxels in ith region of Allen Brain Atlas in the native space.  954 

 955 
Since the coordinates obtained from the inverse transform are not always whole numbers, the interpolation 956 
function (Intp) is employed to map the intensity values from the non-integer coordinates to the nearest whole-957 
number coordinates (original native coordinates). This interpolation process can be mathematically 958 
expressed as follows: 959 

 960 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼{}: (𝓍𝓍,𝓎𝓎,𝓏𝓏, 𝓉𝓉) ∈  ℝ4 → ∈ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝕀𝕀4 962 

 961 
where ℝ4 𝑎𝑎𝑎𝑎𝑎𝑎 𝕀𝕀4 represent the real numbers and integer of four-dimensional coordinates space, respectively.  963 
 964 
b. Group Stage 965 
b.1. Group-Level Analysis 966 
After obtaining the activation maps or region-time analysis on the individual level. We can investigate the 967 
group effects across these measures. To this end, we introduce two methods: averaging and t-test. Both 968 
methods aid researchers in comprehending the common patterns within their data. Averaging summarizes a 969 
set of data, while the t-test provides statistical inference for the hypothesized effects. This allows researchers 970 
to study both of the fixed effect (averaged based on part of population) or random effect (statistical inference 971 
on the entire population) of the given stimuli. 972 

 973 
b.1.1. Averaging for fixed effect  974 
Averaging is a powerful tool for summarizing a set of data. We offer two types of averaging methods: 975 
arithmetic mean (default) and median mean. The arithmetic mean is the most commonly used method, but it 976 
is not resistant to extreme value. If the dataset contains extreme value, the median value, which represents 977 
the middle value of the dataset, provides a more reliable summary. Both arithmetic mean and median can be 978 
applied to activation maps or region-time data. 979 

 980 

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
∑ 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 981 

 982 
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)(𝑖𝑖) = 0.5 983 

 984 
Where 𝛽𝛽𝑖𝑖 denotes the activation map of ith trials, and 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍. 𝐶𝐶𝐶𝐶𝐶𝐶𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧) represents the cumulative 985 
distribution function of activation maps at coordinate 𝑥𝑥,𝑦𝑦, 𝑧𝑧. 986 
 987 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑡𝑡) =
∑ 𝐼𝐼𝑖𝑖(𝑟𝑟, 𝑡𝑡)𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 988 

 989 
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑡𝑡) = 𝐼𝐼𝑖𝑖(𝑟𝑟, 𝑡𝑡)  𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼(𝑟𝑟,𝑡𝑡)(𝑖𝑖) = 0.5 990 

 991 
where 𝐼𝐼𝑖𝑖(𝑟𝑟, 𝑡𝑡) denotes the region-time matrix of ith trials, and r ∈ 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇, 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 denotes the regions in Allen 992 
Brain Atlas space. 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼(𝑟𝑟,𝑡𝑡) represents the cumulative distribution function of region-time intensity of rth region 993 
at timepoint t. 994 

 995 
 996 

b.1.2.  Joint Beta value and T value for fixed effect analysis 997 
 998 
To calculate the fixed effect, we first combine the individual beta values and their variances. The overall T-999 
value is then computed from these pooled estimates, as shown below: 000 
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 001 
 002 

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
∑ 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1

∑ 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1

 003 

 004 

𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
1

∑ 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1

 005 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

�𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
 006 

 007 
Where 𝛽𝛽𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) denotes the activation map of ith trials and 𝑉𝑉𝑎𝑎𝑎𝑎𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) denotes the variance map of ith trials. 008 
 009 
b.1.3. T-test for random effect 010 
The t-test is a widely used statistical method for hypothesis testing (alternative hypothesis). For instance, it 011 
can be used to determine whether the activation in a particular region is significantly higher than the baseline. 012 
In this case, the null hypothesis assumes that the activation signal change is equal to the baseline. 013 
Alternatively, it can be employed to test the alternative hypothesis of a difference between two groups 014 
(alternative hypothesis) by rejecting the null hypothesis that the signal change of the two groups is equal. We 015 
have implemented one-sample t-tests, two-sample t-tests, and paired t-tests, allowing researchers to select 016 
the appropriate method based on their data and the research question they aim to address. 017 

 018 
The t-test can be applied to both activation maps and region-time data. The activation map and region-time 019 
matrix of one-sample t-tests can be written as follows: 020 

 021 

𝔗𝔗(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)

�𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 022 

 023 

𝔗𝔗(𝑟𝑟, 𝑡𝑡) =  
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑡𝑡)
𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)

�𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 024 

 025 
where 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍 , 𝑡𝑡 ∈ 𝑇𝑇.   𝔗𝔗(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  denotes the t-value of activation strength of (x,y,z) coordinates, 026 
and 𝔗𝔗(𝑟𝑟, 𝑡𝑡) denotes the t-value of activation strength of rth region at timepoint t. 𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧) and 𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡) denotes 027 
the standard deviation of the activation maps at coordinate (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and intensity of rth region at timepoint t, 028 
respectively, across trials. It can be written as: 029 

𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧) =  �
1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 1
� (𝛽𝛽𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧))

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 030 

  031 

𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡) =  �
1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 1
� (𝐼𝐼𝑖𝑖(𝑟𝑟, 𝑡𝑡) − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 𝑡𝑡))

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 032 

 033 
Similarly, the two-sample t-test can be written: 034 

 035 

𝔗𝔗(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔1 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)

�
𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝑔𝑔𝑔𝑔𝑔𝑔1 2

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔1 +

𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝑔𝑔𝑔𝑔𝑔𝑔2 2

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔2

 036 

 037 
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𝔗𝔗(𝑟𝑟, 𝑡𝑡) =  
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔1 (𝑟𝑟, 𝑡𝑡) − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔2 (𝑟𝑟, 𝑡𝑡)

�
𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)
𝑔𝑔𝑔𝑔𝑔𝑔12

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔1 +

𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)
𝑔𝑔𝑔𝑔𝑔𝑔22

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔2

 038 

 039 
where 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌, 𝑧𝑧 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑇𝑇,  𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔1  and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔2  denotes the mean activation at coordinate (x,y,z) of group 040 

1 and group 2, respectively. 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔1  and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔2  denotes the mean intensity of rth reigons at timepoint t of group 041 
1 and group 2, respectively. Similarly, the  𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝑔𝑔𝑔𝑔𝑔𝑔1   and 𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝑔𝑔𝑔𝑔𝑔𝑔2   denotes the standard deviation of the 042 

activation at coordinate (x,y,z) of group 1 and group 2 across the trials, respectively. 𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)
𝑔𝑔𝑔𝑔𝑔𝑔1 and 𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)

𝑔𝑔𝑔𝑔𝑔𝑔2 denotes 043 
the standard deviation of the intensity of rth reigons at timepoint t across trials of group 1 and group 2, 044 
respectively. 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔1  and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔2  denotes the trials number of group 1 and group 2, respectively. The sample 045 

number in two groups is not necessarily equal. 046 
 047 

The paired t-test is employed to determine whether the samples measured at different time points, denoted 048 
as group 1 and group 2, exhibit significant differences. The paired t-test can be directly applied to the 049 
activation map: 050 

 051 

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  

∑ 𝛽𝛽𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝛽𝛽𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖=1

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 052 

 053 

𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �

1
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1

� (𝛽𝛽𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝛽𝛽𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)) − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑥𝑥,𝑦𝑦, 𝑧𝑧))

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖=1

 054 

 055 

𝔗𝔗(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  
𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜎𝜎𝛽𝛽(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

�𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 056 

 057 
And for the region-time matrix,  058 

 059 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑟𝑟, 𝑡𝑡) =  

∑ 𝐼𝐼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔1(𝑟𝑟, 𝑡𝑡) − 𝐼𝐼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔2(𝑟𝑟, 𝑡𝑡)𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖=1

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 060 

𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �

1
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1

� (𝐼𝐼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔1(𝑟𝑟, 𝑡𝑡) − 𝐼𝐼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔2(𝑟𝑟, 𝑡𝑡)) − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑟𝑟, 𝑡𝑡))

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖=1

 061 

𝔗𝔗(𝑟𝑟, 𝑡𝑡) =  
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑟𝑟, 𝑡𝑡)
𝜎𝜎𝐼𝐼(𝑟𝑟,𝑡𝑡)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

�𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 062 

 063 
The one-sample and paired t-tests are implemented using the built-in MATLAB function ttest, while the two-064 
sample t-test is performed using the function ttest2. 065 
 066 
b.2. Visualization 067 
Visualization serves as the culminating step in the data analysis process, arguably holding the utmost 068 
importance. It plays a pivotal role in enabling researchers to decipher and comprehend the extracted insights 069 
from the data. OfUSA provides a comprehensive collection of visualization tools to effectively represent both 070 
the spatial distribution and temporal dynamics of brain activity. For spatial distribution, multislice view and 3D 071 
rendering techniques are employed to pinpoint the localization of activity within the brain. Additionally, OfUSA 072 
offers region-time and time course views to visualize time course fluctuations, allowing researchers to track 073 
the evolution of brain activity over time. This comprehensive set of visualization tools empowers researchers 074 
to gain a deeper understanding of the complex patterns and relationships within the data. 075 

 076 
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b.2.1.Multislice view (mosaic view) 077 
The multislice view, also known as the mosaic view, presents multiple slices in a single image. This 078 
visualization method enables researchers to effortlessly gain a comprehensive or partial overview of the fUS 079 
images (underlay images) or activation maps (overlay images). In OfUSA, researchers can select the specific 080 
slices to be displayed by specifying their indices in an array. For instance, the array [50, 70, 90, 95] would 081 
display the 50th, 70th, 90th, and 95th slices. 082 

 083 
The multislice view accommodates the display of various activation maps, including the signal change map 084 
for each trial [β_ABA (x, y, z)], the group mean signal change map [β_mean(x, y, z)], and the group t-value 085 
map [T(x, y, z)]. Consequently, the display range for the overlay data and threshold should be adjusted 086 
judiciously based on the characteristics of the activation map. For instance, the signal change map typically 087 
ranges between -15% and 15%, and a suitable threshold could be 3% (if the tSNR is 5 for each 36 trials, 088 
then the noise level of all 36 trials is approximately 3%). The t-value map theoretically ranges from -∞ to ∞, 089 
but in practice, it typically falls between -15 and 15. Appropriate thresholds for the t-value map could be T=2 090 
(it is approximately the level of P<0.05 if there are 36 trials). Researchers should always adhere to the 091 
appropriate display range based on the loaded data. 092 

 093 
When brain images are displayed in the coronal orientation, the top row or left column of the mosaic view 094 
corresponds to the anterior portion of the brain. Within each slice image, the right side represents the right 095 
hemisphere, while the left side represents the left hemisphere. The top and bottom edges correspond to the 096 
dorsal and ventral aspects of the brain, respectively. 097 
 098 
When brain images are displayed in the sagittal orientation, the top row or left column of the mosaic view 099 
corresponds to the left portion of the brain. Within each slice image, the right side represents the anterior part 100 
of the brain, while the left side represents the posterior part. The top and bottom edges correspond to the 101 
dorsal and ventral aspects of the brain, respectively. 102 

 103 
b.2.2. Region-time view (barcode view) 104 
The region-time view, also known as the barcode view, seamlessly integrates spatial and temporal 105 
information into a single, informative figure. The arrangement of regions and time frames along the rows and 106 
columns, respectively, allows for a clear visualization of the time course for each region. This barcode-like 107 
representation effectively highlights activated regions and patterns of the hemodynamic response function. 108 

 109 
The barcode view facilitates the visualization of various region-time matrix, including the single-trial matrix 110 
[I(r,t)], the group-averaged matrix [I_mean(r,t)], and the group t-value matrix [T(r,t)]. As discussed earlier, 111 
researchers should employ appropriate display ranges based on the characteristics of the region-time matrix 112 
in question. Signal change fluctuations typically fall within the range of -15% to 15%, while T-values invariably 113 
range from -15 to 15. 114 

 115 
b.2.3. Time course view  116 
The time course view empowers researchers to trace the hemodynamic response patterns of specific regions 117 
by plotting their time courses. The user-friendly interface enables researchers to manually select the ROI, 118 
allowing for a detailed examination of the hemodynamic response characteristics, including onset time, slew 119 
rate, peak value, and the activation tail. 120 

 121 
Researchers can additionally visualize the standard deviation and average of the hemodynamic response 122 
function across trials, providing valuable insights into the reliability of the observed time course pattern. This 123 
visualization also serves as an effective tool for assessing the stability of baseline noise. 124 

 125 
b.2.4. 3D Rendering 126 
OfUSA additionally incorporates 3D rendering capabilities to assist researchers in identifying activation areas 127 
within a three-dimensional space. As outlined in the multislice view section, researchers should employ 128 
appropriate display ranges and thresholds to effectively visualize the 3D rendered surface. To prevent user 129 
overload from an excessive number of small activated clusters, only the top 50 clusters, ranked by cluster 130 
size, are displayed. VideoS1 illustrates an example of 3D rendering. 131 
 132 
To render each cluster, OfUSA employs a stochastic algorithm to map activation strength onto the cluster’s 133 
surface. This algorithm assigns the highest activation value to the nearest surface point based on the 134 
Euclidean distance in 3D space. To expedite this process, we parallelize the surface mapping by randomly 135 
dividing the surface points into multiple subsets (each containing γ elements). For each surface subset, a 136 
randomly selected subset of activated voxels (with ω elements) is mapped to the nearest surface point. This 137 
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iterative process continues until a majority of the activated voxels have been mapped. The stochastic 138 
algorithm can be summarized as follows: 139 

 140 
Step 1: Divide the surface into Nsurf subsets, each containing γ elements. These subsets can be 141 
represented as Surfacei(γ), where i ∈ Nsurf. 142 
 143 
Step 2: Repeat Nsurf times: Randomly select a subset of voxels within the activated area, each with ω 144 
elements. These subsets can be denoted as Activatedj(ω), where j ∈ Nact. 145 
 146 
Step 3: Repeat Nact times: For each voxel in Activatedj(ω), calculate the Euclidean distance between the 147 
voxel and the surface points Surfacei(γ). If the voxel's intensity exceeds the intensity of the nearest 148 
surface point, project the intensity onto the nearest ϵ points on the surface. The smoothing factor ϵ is set 149 
to 8 by default. 150 
 151 
Practically, we utilized MATLAB's built-in functions to visualize the 3D rendered surface. The surface of 152 
the activated area was generated using the isosurface function, while the rendering was accomplished 153 
employing the patch function. 154 

 155 
 156 
B. Create data driven template 157 
 158 
OfUSA creates a study-specific, data-driven template using an iterative alignment and averaging algorithm, 159 
which is illustrated in Figure S2. The automated registration at the core of this process utilizes the imregtform 160 
function in MATLAB. The procedure is as follows: 161 

 162 
Step 1: Initially, all anatomical images from each session (𝐼𝐼𝐼𝐼𝑖𝑖, where i is the session number) are 163 
loaded. 164 

 165 
Step 2: An initial mean template, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0 , is computed by averaging these raw images. 166 

 167 
Step 3: The algorithm then enters an iterative loop. In each iteration k, every original image 𝐼𝐼𝐼𝐼𝑖𝑖 is 168 
realigned to the current template from the previous iteration 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘−1 to produce a set of newly 169 
registered images 𝐼𝐼𝐼𝐼′𝑖𝑖. 170 

 171 
Step 4: A new, refined template 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 is then calculated by averaging these newly registered 172 
images 𝐼𝐼𝐼𝐼′𝑖𝑖.  173 
 174 
Step 5: This process of realignment and averaging (steps 3 and 4) is repeated 10 times. The output 175 
of the final iteration serves as the definitive data-driven template. 176 
 177 

 178 
C. Compare the preprocessing results 179 
To compare the effect of different preprocessing steps, we used five indices to evaluate the quality of 180 
hemodynamic response, which includes the inverse of Noise level, SNR, CNR, D-prime, and the inverse of 181 
trial standard deviation.  182 
 183 
The three indices can be presented in the following formula. 184 
 185 
The SNR:  186 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))|

𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡))
 187 

 188 
where 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is the hemodynamic signal intensity of the stimulation period. 189 
 190 
The CNR:  191 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� −  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)��

𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡))
 192 

 193 
The D-prime (d‘) : 194 
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𝐷𝐷′ =  
�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)�� 

�𝑠𝑠𝑠𝑠𝑠𝑠�𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)�2 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡))2
2

 195 

 196 
where 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) is the hemodynamic signal intensity of the baseline period, and std denotes the standard 197 
deviation. 198 
 199 
  200 
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Appendix II 201 
 202 
A. Mouse  Experiment Setup 203 
 204 
Animals and Preparation 205 
A Wild-type C57BL/6J m mouse (~25–30 g body weight; >8 weeks old; Janvier Labs) were used in this study. 206 
The fUS datasets were repurposed from previous fundamental research projects and were not generated 207 
specifically for the present work. All procedures were approved by the Animal Care Committee of Katholieke 208 
Universiteit Leuven, in compliance with national regulations on laboratory animal use and the European 209 
Union Directive 2010/63/EU on the protection of animals used for scientific purposes. To date, the approach 210 
has been applied exclusively to male mice, although it is not inherently limited to one sex. The mouse 211 
undergoing imaging eight times. 212 
 213 
The animal preparation procedure adhered to the protocol outlined in our previous publication (Brunner et al., 214 
2021). Briefly, the mice underwent cranial window surgery to expose the brain from bregma +3 mm to -7 mm. 215 
During the surgery, the mice were anesthetized with a ketamine/medetomidine mixture (0.1 mL/20 g), and 216 
their body temperature was maintained at 37 degrees Celsius using an in-house heating system. To minimize 217 
inflammation and pain, the animals received post-surgical treatment with analgesic (buprenorphine 0.1 218 
mg/kg), antibiotic (cefazoline 300 mg/kg), and anti-inflammatory (dexamethasone 0.5 mg/kg). Following a 219 
five-day recovery period, the mice underwent gradual habituation to the head-fixed position. 220 
 221 
Experimental Paradigm 222 
This experiment employed visual and tactile stimuli. Visual stimulation consisted of a checkerboard pattern 223 
presented on the right side of the LCD screen positioned 20 cm from the subject. Tactile stimulation was 224 
delivered to the entire right whisker pad using a 3D-printed comb driven by a piezoelectric actuator 225 
(PiezoDrive BA6020). The maximum deflection of the comb is 0.7 cm. All stimuli lasted for 5 seconds. Figure 226 
4 illustrates the experimental setup and the stimuli. 227 

Each trial comprised a 10-second baseline period, followed by a 5-second stimulation period, and concluded 228 
with a 15-second recovery period, resulting in a total trial duration of 30 seconds. Three experimental 229 
conditions were presented in each session: visual [V] and whisker [W]. Each condition was randomly 230 
presented 20 times per session. A high-quality anatomy image was obtained after the experiment for 231 
registration purposes. Each session lasted approximately one hour and ten minutes. 232 

vfUS imaging 233 
For acquiring the vfUS imaging, we employed the acquisition toolbox with the following hardware setup 234 
(Brunner et al., 2020, 2021). In summary, we utilized a 2D-array transducer (MAT 15.0/32 x 32, Vermon, 235 
France) with a surface area of 9.6 x 9.6 mm, positioned on the cranial windows prepared earlier. We 236 
employed a central excitation frequency of 15 MHz with a bandwidth of 14 MHz (encompassing 8 MHz to 22 237 
MHz). The sampling rate for the scattered echoes was 60 MHz. The elements on the probe were divided into 238 
four sectors, each containing 8 x 32 elements. 3D compound plane waves were generated by transmitting 239 
and receiving from these sectors. Ultimately, we reconstructed vfUS whole-brain images with a field of view 240 
(FOV) of 9.6 x 8.1 x 7.0 mm in the left-right, anterior-posterior, and dorsal-ventral directions, respectively. 241 
The corresponding voxel size was 0.15 x 0.15 x 0.1 mm in the left-right, anterior-posterior, and dorsal-ventral 242 
directions, respectively. Each brain volume had a frame rate of 2 Hz. 243 
 244 
B. Primate Experiment Setup 245 
Animals and Preparation 246 
A single male rhesus macaque (Macaca mulatta; 9.5 kg, 9 years old) was utilized for this study. All housing 247 
and procedures were conducted at the KU Leuven Medical School primate facility. The animal was socially 248 
housed in a group enclosure with access to physical and mental enrichment (e.g., toys, music) and was 249 
exposed to a 12-hour natural and artificial light-dark cycle. The subject’s health was continuously monitored 250 
by trained technical staff, veterinary staff, and experimenters. 251 
 252 
The surgical procedures were performed as previously described in (Vanduffel et al., 2001). Briefly, an MR-253 
compatible headpost and recording chamber were surgically implanted. The implant was secured using 254 
dental cement, and the recording chamber was positioned according to pre-operative anatomical images to 255 
ensure access to areas of the dorsal and ventral visual streams. All surgical and experimental protocols were 256 
in agreement with institutional (KU Leuven Medical School: Ethische Commissie Dierproeven), national, and 257 
European guidelines (Directive 2010/63/EU). 258 
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 259 
Experimental Paradigm 260 
The subject was trained via operant conditioning with a liquid juice reward to perform a passive fixation task. 261 
During all experimental sessions, the subject was head-fixed and seated in the sphinx position. To minimize 262 
motion artifacts, the subject was also trained to position its hands in a box located directly in front of and 263 
below its head. 264 
 265 
Visual stimuli were presented on a 32-inch screen (3840 x 2160 pixels) positioned 40 cm from the subject, 266 
while eye position was tracked at 120 Hz using an infrared camera system (ISCAN; Woburn, MA, USA) 267 
focused on the right eye. A trial was initiated when the subject maintained fixation on a central white dot 268 
within a 2x2-degree window. Following a variable inter-trial interval (ITI), a circular, colorful checkerboard 269 
stimulus with a radius of 40 visual degrees was presented centrally for 8 seconds, during which it flashed at 270 
10 Hz. The subject received a reward on a fixed schedule for maintaining fixation throughout the stimulus 271 
presentation. Each experimental run lasted approximately 18 minutes, comprised approximately 18 trials, 272 
and utilized an ITI that varied between 18 and 22 seconds in 0.5-second increments. The probability of each 273 
ITI was weighted in a descending linear fashion, such that the 18-second ITI was nine times more likely to 274 
occur than the 22-second ITI. 275 
 276 
vfUS imaging 277 
The vfUS imaging acquisition was adapted from the technique described in (Brunner et al., 2021). We utilized 278 
the same 2D-array transducer (MAT 15.0/32 x 32, Vermon, France) as in the prior rodent study. This probe 279 
has a central excitation frequency of 15 MHz, which permits a penetration depth of approximately 1 cm into 280 
the brain. Ultimately, we reconstructed vfUS images with a field of view (FOV) of 9.6 x 8.1 x 100 mm in the 281 
left-right, anterior-posterior, and dorsal-ventral directions, respectively. The corresponding voxel size was 282 
0.15 x 0.15 x 0.1 mm in the left-right, anterior-posterior, and dorsal-ventral directions, respectively. Each brain 283 
volume was acquired at a frame rate of 1.4 Hz. 284 
  285 
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