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A B S T R A C T

Functional ultrasound (fUS) imaging has emerged as an important technology for investigating a multitude of 
neuro-related research areas in various animal models and patients. Beyond imaging quality and specificity, 
computational analysis of fUS data sets is critical for accurately and comprehensively characterize brain func
tions and circuits, under physiological and pathological conditions. To facilitate efficient and reproducible data 
analysis, we present a python-based open-source software (PyfUS) providing an end-to-end pipeline for regis
tration, signal processing and visualization of fUS datasets. In addition to the conventional analysis - region- 
based averaging and correlation - we introduce the single-voxel clustering as an alternative analysis method 
that allows simultaneous spatial and temporal examination of the fUS signals at the finest scale allowed by the 
fUS. We compare the different strategies for analyzing fUS data and display the results of the analytical pipeline 
on a dataset comprising awake mice subjected to visual stimulation. In a standard computing environment with 
32 GB of memory, a 10-Gb data size of brain-wide fUS images can be loaded in ~1 h and fully processed with the 
3 analysis methods in few minutes. The flexibility of the software allows for the easy extension to other animal 
models and user-developed modules. We deliver a tool providing a convenient access to state-of-the-art analysis 
methods and an open platform for the development of new processing strategies.

1. Introduction

Over the years, the functional ultrasound (fUS) technology [24,25]
has seen an increasing exposure and adoption within the neuroscience 
community. In short, the fUS neuroimaging modality allows the moni
toring of brain hemodynamics at an unprecedented spatio-temporal 
resolution (~200µm3, 5 Hz) [27] and faithfully reports on neuronal 
activity [1,11,21,26,29,40]. This increased attention has been allowed 
by multiple developments in terms of hardware (e.g., miniaturized [39]
and matrix-array transducers[31,7]), experimental tools (e.g., surgery, 
platform, head-post, synchronous video recordings) [13,14,7,8] and the 
standardization of the experimental procedures [8]. Comparatively, the 
data analysis procedures have only marginally evolved since the seminal 
papers introducing the technology. Indeed, analysis still heavily relies 
on custom scripts implementing correlation and more recently 

region-averaging based on existing atlases. We posit that this is due to 
the lack of an open and standardized framework for the data analysis. 
Recently, a new analysis method has been developed, known as 
single-voxel clustering [22], a method provides clearer and more precise 
maps of brain activity in comparison to conventional methods. The 
present work aims to provide the community with a Python-based 
open-source software for fUS data analysis (PyfUS), a modular plat
form that allows for both the use of conventional strategies in a repro
ducible fashion and the use of new single-voxel clustering methods for 
fUS signal processing at the whole-brain scale.

2. Overview

This work presents a flexible approach to fUS data analysis along 
with practical guidelines. It is composed of 5 procedures. The two first 
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procedures - data loading and data selection - format the data for the 
application of three different signal processing strategies (Fig. 1.a). 
These strategies are the conventional correlation [30,40] and 
atlas-based region averaging [26,7,9], and single-voxel clustering [22]
that we introduce in detail in this manuscript. While initially used on a 
single brain region from a single-plane fUS dataset [22], we have 
extended the single-voxel clustering method to whole-brain fUS dataset. 
Once the software is downloaded and installed following instruction 
detailed in Software setup, the user can run the different procedures 
and replicate the results presented using example datasets (see Example 
datasets).

2.1. Procedure 1: Data formating and preprocessing

The data loading section aims to adequately format and preprocess 
the data to be included in the later stages of the analysis (Procedures 
2–5). This section details how data are averaged, at which hierarchical 
level of the experiment they are processed (e.g., trial, session, animal, 
group; see Box 1) and details on the saving/storage of the information.

2.2. Procedure 2: Data selection, a common stage to Procedures 3–5

The data selection stage occurs once the formating and preprocessing 
are completed and consists of selecting the data to be used in the analysis 
process. This section presents how to perform the selection and set 

hyperparameters correctly.

2.3. Procedure 3: Region averaging analysis

The region-based averaging is a widely employed analytical strategy 
for examining the fUS signal that often relies on brain atlases. The un
derlying concept is straightforward: the fUS signals of all voxels 
belonging to a given region are averaged together to produce a single 
temporal trace, thereby leading to a simple interpretation of the signal 
change (Fig. 1.b). However, this approach obliterates the spatial 
component of the response, which could result in the aggregation of 
signals from different sources, including noisy voxels and signals arising 
from different phenomena (e.g., loco-regional activity), thus potentially 
leading to misinterpretation.

2.4. Procedure 4: Correlation

The correlation analysis consists of the computation of the Pearson 
correlation coefficient between the fUS signal of each voxel and a square 
window matching the stimulus pattern (Fig. 1.c). This results in a cor
relation map, and a Fisher transform can be employed to determine 
whether a voxel is significantly correlated with the stimulus[8]. This 
approach offers several advantages, including its straightforward 
implementation and its universal applicability, while allowing for a 
spatial quantification of the activity. However, this approach does not 

Fig. 1. Workflow and analysis concept, a, Description of the procedures performed by the software to analyze images acquired by fUS imaging. Procedure 1 consists 
of formating and preprocessing the fUS dataset, including quality control, registration to the reference atlas, data averaging, reliability map generation, and single- 
voxel signals as the main output. Procedure 2 allows the selection of the data to process. The signal from the single voxel is used as input for procedures 3–5 to 
perform region-based signal averaging, correlation, and single-voxel clustering, respectively, resulting in dedicated outputs and associated visualizations. The main 
steps are color-coded in green, sub-processes in blue, options in pink, and outputs in orange. b, Left; Example of µDoppler image of mouse brain acquired with linear 
ultrasound transducer, with the right superior colliculus (SC) outlined in white. Scale bar = 1 mm. Right; Concept of region-based averaging performed in Procedure 
3. The temporal traces of all voxels belonging to a given region (e.g., SCi, in orange) are averaged to obtain a single trace summarizing the activity in the region of 
interest. ΔI denotes the variation of signal amplitude. c, Concept of correlation-based analysis performed in Procedure 4. The Pearson correlation coefficient is 
computed between the temporal trace of each individual voxel and a square pattern replicating the stimulus pattern (or other kind). It results in a correlation map in 
which each voxel is color-coded based on its correlation coefficient. This map can be further binarized with a Fisher transform to obtain a set of voxels statistically 
correlated with the stimulus at a given confidence level (z-score map). d, Concept of the single-voxel clustering performed in Procedure 5. Temporal traces from 
single voxels are grouped together. The dimensionality of the input signal is reduced using a principal component analysis (PCA) and the output fed into a K-means 
clustering algorithm. The procedure results in a cluster map where each voxel is color-coded based on its cluster attribution, and the temporal traces of single voxels 
grouped by cluster. e, Qualitative comparison of the three analysis procedures, including region-based averaging (green), the correlation (orange) and the single- 
voxel clustering (blue).
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provide any information about the shapes of hemodynamic responses 
and potentially excludes pre-stimulus (e.g., task preparation, stimulus 
anticipation) or post-stimulus activities (e.g., non-aligned behavior, 
delayed neuronal response).

2.5. Procedure 5: Single-voxel clustering

As an alternative of conventional methods (Procedures 3 and 4), we 
detail the single-voxel clustering method that addresses the drawbacks 
of both the region-based averaging and correlation approaches. This 
method involves the clustering of the signal from each voxel individu
ally. It consists of two stages: a feature extraction stage (e.g., with 
principal component analysis (PCA)) to reduce the dimensionality of the 
data and a clustering stage, implemented with K-Means (Fig. 1.d). This 
method allows for joint spatial and temporal analysis of the data with 
low bias through the resulting cluster maps (in which each voxel is color- 
coded depending on its cluster attribution) and the traces of each cluster
[22]. Importantly, recent research has demonstrated that small groups 
of voxels as those yielded with single-voxel clustering faithfully report 
local neuronal activity[21]. Disadvantages include the more complex 

readout compared to the other approaches, particularly at the 
brain-wide scale, and some noise sensitivity depending on the feature 
extraction method. A qualitative comparison of region-based averaging, 
correlation and single-voxel clustering analyses is presented in Fig. 1.e 
to help users to select the most appropriate method to their needs.

2.6. Applications

This workflow aims to incorporate conventional and novel ap
proaches for understanding brain function captured by fUS at different 
scales and in different experimental conditions, i.e., from anesthetized to 
awake [26,8], physiology [33,5] to pathology [12,17,32,4,6], acute to 
chronic, and restrained to freely behaving [14,34,35,39,7,9]. The 
pipeline includes analyses routinely performed in most research papers 
using the fUS modality (i.e., voxel-to-voxel correlation maps with 
thresholds of activity, atlas-based segmentation with regional aver
aging), as well as innovative strategies such as the single-voxel clus
tering. The latter approach has been developed to fill a gap in 
spatiotemporal data exploration and to deal with atypical data sets, such 
as those generated i) in models lacking the detailed and digitized atlas 

Box 1
| Which fUS data can be used?.

Data format and metadata requirements. The software is designed to work with input data that are MATLAB files (.mat). The following 
fields are required:  

● “I” contains the data itself, a 4D volume whose first 3 dimensions are space and the last one is time.
● “md” refers to the metadata, organized as follow: 

○ “size” as the number of voxels for each dimension
○ “voxelSize” as the voxel size for each spatial dimension
○ “Direction” as the orientation of the data for each spatial dimension, separated by a period (e.g., ‘DV.AP.LR’ if the first dimension is the 

dorso-ventral axis, the second the antero-posterior axis and the last the left-right axis).
The transformation matrix, if provided, is expected to have a field ‘Transf’, which contains the 4 × 4 transformation matrix in the field ‘M’. 
For the file to be recognized by the software, the only requirement is that ‘transf’ or ‘Transf’ is present in the filename, separated from other 
elements by ‘_’ (examples of valid names: ‘Transf.mat’, ‘transf_mouseA.mat‘, ‘ses1_Transf_mouseB.mat’). Example data are available on the 
GitHub repository. 
Dataset organization. Dataset is organized in a structured and tree-like way:  

● experiment ID, providing a unique identifier to the experiment (ex: visual_experiment_01012024)
● one / multiple experimental group(s), defined by a unique identifier (ex: control, treatment)
● one / multiple subject(s), defined by a unique identifier (ex: mouseA, mouseB, mouseC)
● one / multiple session(s) (ex: session1) 

○ a folder ‘fus’, containing one / multiple stimulus / stimuli (ex: checkerboard, gratings)
○ a folder ‘other’, containing the transformation matrix and other information

The path to the folder containing the datasets is called the <path to the dataset> . Below is an example of organization:  

− experiment ID: the name of the experiment 
− experimental group 1 (e.g., WT) 

− subject 1 (e.g., mouseA) 
− session 1 

− fus 
• stimulus 1 (e.g., drifting grating orientation 0◦)
• …
• stimulus T (e.g., drifting grating orientation 180◦)

○ other
− session S

− subject M
− experimental group G (e.g., KO)

Compatibility with 2D. The software is fully compatible with data acquired with linear (2D) and matrix array (3D) transducers. However, 
for 2D single plane images, the data set must be converted to a volume by creating an artificial dimension. For example, a coronal image of 
size (175,128) with orientation dorso-ventral and left-right (DV.LR) is converted to a volume of size (175,1128) with orientation dorso- 
ventral, antero-posterior and left-right (DV.AP.LR).
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typically required for reliable data segmentation and (sub-)regional 
analysis of functions, ii) without prior knowledge of recording locali
zation, or iii) in single trials when reproducibility of experimental pro
cedures is challenging. As the work proposed here may not correspond 
to specific experimental designs or experimenters wishes, we have 
opened the software to allow collaborative efforts to add pre-existing but 
unimplemented approaches or to develop new analysis tools and 
pipelines.

2.7. Comparison with other approaches: Advantages and limitations

As fUS technology has only recently entered the field of neuro
imaging, few software packages for analyzing fUS data have been made 
available to the community. On the one hand, a commercially available 
software [2] supports i) registration of the brain to a reference atlas, ii) 
generation of task-evoked activation maps with associated regional time 
courses, or iii) seed-based functional connectivity. However, the soft
ware is dependent to the acquisition system with restricted access to the 
script, constrained to mouse model, and has limited analysis options and 
data visualization. On the other hand, a free software package [8] is 
available online (https://github.com/nerf-common/whole-brain-fUS). 
It is suitable for i) manual atlas-based registration and segmentation, ii) 
the assessment of data stability and motion artifacts, iii) correlation and 
region-based analyses. While this package is open to fUS users, it is 
supported by Matlab, an expensive software that limits a broad acces
sibility and use. It provides sufficient analysis capabilities for highly 
structured experiments (block design, data averaging, …) but leaves less 
flexibility for more advanced analysis.

Therefore, to the best of our knowledge, there is no open-source tool 
that combines high flexibility (at each step and process) and high 
versatility to perform the main procedures (data formating, registration, 
signal preprocessing, visualization) from regional to brain-wide scale 
regardless of paradigm specificity. Furthermore, this fully open software 
has been designed to promote high modularity, so that the community 
can easily add new modules and options to the current framework. 
Importantly, the workflow and procedures are designed to support 
reproducibility of fUS analysis across users, as the parameters used, and 
the features extracted can easily be shared and compared.

Currently, we do not present a graphical user interface. While a code- 
only approach may discourage some users, we provide a fully annotated 
and operated script that aims to empower the user towards full access 
and understanding of the analysis procedure. However, we do not 
exclude the possibility of implementing this framework in a user- 
friendly graphical interface at a later stage.

2.8. Experimental design

The analysis workflow presented does not put any specific constraint 
on the experimental design. This include the experimental paradigm 
(number of stimuli, duration, …), probe specifications (linear array, 
matrix array,…), probe orientation (sagittal, coronal, with angle) and 
brain volume covered (single plane, scan, whole brain), based on the 
requirements of individual experiments. As mentioned above, our 
approach is suitable for atypical datasets, such as those from animal 
models lacking brain atlas, or for the analysis of single trial. However, it 
is important to keep in mind that this tool was primarily design for the 
analysis of trial-based or trial-like paradigms.

2.9. Subjects

The fUS images presented in this procedure were generated from 
adult C57bl/6j mice subjected to cranial window, head-post implanta
tion and brain imaging under awake conditions. Animal preparation (i.e. 
surgery, medication and post-operative care), habituation to the setup 
and head fixation strictly follow the protocol previously described [8].

2.10. Ultrasound transducer

Parameters such as field of view, spatial resolution, and imaging 
frequency depend on the transducer and hardware used to acquire brain 
hemodynamics and function. Due to the novelty of using matrix arrays 
[31,7], as well as their cost and availability, about 90 % of fUS experi
ments have been performed with linear arrays to date. To cover most 
experimental conditions, from single-plane imaging and brain-wide 
scanning with the linear transducer to whole-brain coverage with the 
matrix array, we have implemented a flexible approach that allows data 
analysis from multiple transducer sizes and shapes. However, some re
quirements (including metadata) must be fulfilled to ensure the 
adequate data processing regardless of the transducers. Such details are 
provided in Box 1.

2.11. Experimental datasets

The proof-of-principle validation of the analytical pipeline is based 
on several dataset covering two stimulation paradigms. It has been 
collected with a static matrix array aiming at imaging brain-wide 
functions of awake head-fixed mice as illustrated in Fig. 2a. The data
set consists of a visual stimulus displayed on a large screen aligned to the 
right eye of the mouse. The stimuli started with a 10 sec of grey back
ground (50 % luminance), followed by a drifting grating stimulus con
sisting of a full-field sinusoidal grating that drifts in a direction 
perpendicular to the orientation of the grating (either 0◦ and 180◦) for 
20 sec, before switching back to grey background (50 % luminance) for 
7 sec until the end of the trial. This stimulation pattern is adapted from 
Brunner et al.[7]. This dataset is composed of 3 mice, with 9 / 7 / 9 
sessions respectively and 5 trials/sessions. Here, matrix transducers 
were only used for reasons of convenience. As expressed above and 
discussed in Box 1, the software supports a large diversity of fUS dataset, 
including single-plane imaging [22] and brain-wide scanning with 
linear transducers.

2.12. Expertise needed to implement the software

This work is designed to provide neurobiological and medical im
aging scientists with full access to and in-depth understanding of the 
analysis of the fUS dataset they are studying. To install and run PyfUS 
software, users will need some basic coding skills (ability to use 
command-line software and knowledge on the base principles of Py
thon). It is advantageous for the users to be familiar with the step-by- 
step procedure for fUS imaging and registration to a reference atlas. 
To assist the users in performing Python-based procedures, we have 
extensively annotated the scripts and provided a clear step-by-step 
procedure hereafter with several examples and results along the pro
cedure. Additional resources such as a full API documentation are also 
available online.

3. Material and methods

3.1. Biological materials

Animal models: 3 wildtype C57bl6j mice (~25–30 g of body weight; 
>8 weeks old; Janvier Labs). All the biological data analyzed in this 
work has been collected from several projects, but none of it has been 
generated specifically for it. All experiments presented in this work were 
approved by the Committee on Animal Care of the Katholieke Uni
versiteit Leuven, following the national guidelines on the use of labo
ratory animals and the European Union Directive for animal 
experiments (2010/63/EU). The current approach has so far been 
applied to male mice; however, the applicability of the method is not sex 
restricted.
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3.2. Equipment

All required software and data, along with details about how to 
download all required data for the work are available online at htt 
ps://github.com/OpenfUS/PyfUS and https://zenodo.org/records 
/13341387.

3.3. Hardware

• A workstation with 32 GB RAM as minimum requirements.
• ~ 15 GB of storage space as minimum requirements.

3.4. Software

● An up-to-date operating system (Microsoft Win10 Pro 64 bits).
● PyfUS software, download from the GitHub repository at htt 

ps://github.com/OpenfUS/PyfUS
● PyfUS documentation, available at https://pyfus.readthedocs.io/en/ 

latest

● Mamba https://github.com/mamba-org/mamba
● Miniforge, version 22.3.1 or latest (https://github.com/conda-fo 

rge/miniforge)
● Allen Mouse Brain Common Coordinate Framework v3. The CCFv3 

used in the PyfUS is embedded within the GitHub repository.
● Atom, version 1.63 (https://atom-editor.cc/), a free and open-source 

text and source code editor developed by GitHub.
● List of Python packages included in the virtual environment: 

○ Python, version 3.9.16 (https://www.python.org/).
○ Numpy, version 1.23.5 (https://numpy.org), a package used for 

handling arrays and mathematical operations on arrays (e.g., 
matrix multiplication).

○ Scipy, version 1.10.0 (https://scipy.org/), a package used for 
interpolation, image transforms, integration, MATLAB files 
loading and signal filtering.

○ Pandas, version 1.5.2 (https://pandas.pydata.org/), a package 
used for handling data tables (data frames).

○ Mat73, version 0.63 (https://pypi.org/project/mat73/), a package 
for loading MATLAB v7.3 files into Python native data types.

Fig. 2. Experimental dataset and preprocessing, a, Illustration of the experimental setup used for brain-wide fUS imaging of awake mice. The screen displaying visual 
stimulation is positioned to the right side of the mouse’s face, as previously described[26,8]. b, Typical µDoppler image of the mouse brain acquired with the ul
trasound matrix array. c, Concept of the registration of the µDoppler image to the reference atlas. d, Reliability map for 10 brain volumes imaged with the ultrasound 
matrix array from 10 imaging sessions (shades of red), after rigid registration to the reference atlas. e, Reliability map (in grey) in which individual voxels are imaged 
by a minimum of 70 % of sessions, with in black the outline of the reference atlas. D, dorsal; V, ventral; L, left; R, right.
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○ Pynrrd, version 1.0.0 (https://pypi.org/project/pynrrd/), pynrrd 
is a module for reading and writing NRRD (Nearly Raw Raster 
Data, http://teem.sourceforge.net/nrrd/) files into and from 
numpy arrays.

○ Scikit-image, version 0.19.3 (https://pypi.org/project/scikit-imag 
e/0.19.3/), a package for image processing in Python.

○ Scikit-learn, version 1.2.2 (https://scikit-learn.org/stable/what 
s_new/v1.2.html), a package for using standard machine learning 
tools, including dimensionality reduction and clustering.

○ Seaborn, version 0.12.2 (https://seaborn.pydata.org/), a statistical 
data visualization library used to generate informative plots.

○ Pillow, version 9.3.0 (https://pypi.org/project/pillow/9.3.0/), a 
package with image processing capabilities.

○ Pip, version 23.0.1 (https://pypi.org/project/pip/), a package 
installer for Python.

○ Nibabel, version 5.1.0 (https://pypi.org/project/nibabel/), a 
package to read and write access to common neuroimaging file 
format.

○ Wheel, version 0.37.1 (https://pypi.org/project/wheel/) a pack
age for built-package format for Python.

The estimated memory needed for running through the procedures is 
15–45 GB depending on the parameters of Procedure 1; however, the 
memory needed stands with the data size analyzed. Moreover, the 
timings expressed along the procedure are dependent on the hardware, 
software and dataset specifications detailed above.

3.5. Equipment setup

Download the example dataset used along this study at https://zeno 
do.org/records/13341387. The provided data or original dataset should 
follow the organization as detailed in Box 1 to ensure correct data 
loading and analysis. The processing of the fUS dataset requires the 
installation of Miniforge Prompt and the creation of a virtual environ
ment following the instructions described in Software setup.

Download and install Mamba. Open Miniforge Prompt and create a 
virtual environment ensuring the smooth functioning of the PyfUS 
software by executing the command:

mamba create -n pyfus python= 3.9
Type Y to proceed to the next step.
Activate the environment using the command:
mamba activate pyfus
To install the library, run:
pip install pyfus_lib
Download the example codes located at: https://github.com/Open 

fUS/PyfUS/main/examples. Along the analysis, <path to the exam
ples> refers to the physical location of the example files (e.g., C:/Users/ 
OpenfUS/Downloads).

4. Procedures

To get familiar on how to run data loading with the software, follow 
the code example_data_loading.py. PyfUS only supports Matlab format 
file (.mat) as fUS data input. Each step of this sequence must be run 
every time before starting any PyfUS procedure, unless the environment 
is not closed after a previous analysis.

All commands should be run in the PyfUS directory (i.e., <path to the 
examples>). If the user is not in that directory in the terminal, the first 
step is to change the current directory to PyfUS and activate the virtual 
environment using these command lines:

cd <path to the examples>
mamba activate pyfus

4.1. Procedure 1: Data loading and pre-processing of input data

In a code editor, auto-save is not recommended and might not be 

available. Save any updates made to the script regularly. Check that the 
changes were saved before executing the script. The software docu
mentation contains detailed information on the formatting requirements 
and the types of input that are accepted: see DataLoaderAndPreproc ob
ject in the data_loading module. 

1. Open with the code editor the example dataset: example_data_loading. 
py, located in <path to the examples> . The example code is orga
nized in three sections: 
o Hyperparameters (Lines 7–29), where parameters for data loading 

are selected.
o Trials preprocessing object (Lines 31–35), where objects for per

forming trial selection and/or filtering are defined.
o Data loading (Lines 37–62), where the code for performing the data 

loading is executed. This section is not expected to be modified.
2. Adjust the parameters for the data loading. If the provided dataset is 

used, all parameters can be left as default except for root_folder.

Required parameters: 

• Set the variable root_folder to the path to the dataset to be used (Line 
10, example: ‘C:/Users/OpenfUS/Downloads’). If not existing, two 
folders are created, one to store the loaded data (loaded_data) and a 
second to store output figures (output). 

In a code editor, check that the paths set in the code only ‘/’ as 
folder separators, as ‘\’ is a Python-reserved character.

• Set the variable experiment_ID variable to select the experiment to be 
loaded (Line 11). If using the example dataset provided, set to 
‘example_dataset_gratings’.

• Select the loading mode (Line 13) by setting the variable mode to 
folder_tree or excel: 
o folder_tree (recommended), the data in the <root_folder> / 

<experiment_ID> is expected to be organized as in Box 1. The 
variable excel_source can be ignored here.

o excel, an excel source file is requested to fetch the selected data per 
session. Set the variable excel_source (Line 14) to the path to the 
excel file. This option is not recommended since it requires a lot of 
manual input in the excel source file. However, it offers more 
flexibility than the folder_tree mode in terms of physical location of 
the data. Find a template of the excel file in Fig. 1 - Supplement 
Table 1.

• Set the experimental groups, subjects, sessions, and stimuli to load. 
The input format is the same for all parameters: either a list of the 
identifiers of the element as strings (e.g., [’mouseA’, ‘mouseB’]) or 
None if you want to include all elements (Lines 16–19).

Do not use the character ‘_’ in the identifiers as it is used to parse 
filenames. For example, ‘mouseA’ is a correct identifier, ‘mouse_A’ is 
not. 

• Set the reduction method (i.e., averaging), either ‘mean’, ‘median’ or 
‘single_trial’ (Line 21). If ‘single_trial’ is selected, data will be pro
cessed at the single trial level; thus, the hierarchical level at which 
the data is averaged (i.e., level_avg) will be ignored (Line 22).

• Select the hierarchical level at which the data is averaged (Line 22): 
o ‘session’, data is averaged at the session level yielding one file per 

session and stimulus. Format filename is ‘<experimental 
group> _<subject> _<session> _<stimulus> _avg’.

o ‘subject’, data is averaged at the subject level, including all selected 
sessions and yielding one file per subject and stimulus. Format 
filename is ‘<experimental group> _<subject> _<stimulus> _avg’.

o ‘expgroup’, data is averaged across experimental groups, including 
all selected sessions and subjects, and yielding one file per group 
and stimulus. Format filename is ‘<experimental 
group> _<stimulus> _avg’.
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Example, if a dataset contains two experimental groups ‘groupA’ and 
‘groupB’ subjected to ‘stimulus1’ and ‘stimulus2’, with an averaging set at 
the group level, the name of the elements will be: ‘groupA_stimulus1_avg‘, 
‘groupA_stimulus2_avg‘, ‘groupB_stimulus1_avg‘, ‘groupB_stimulus2_avg‘.

Each generated file will be referred to as an ‘element’ and ‘name’ will 
refer to the filename.

Note that the higher the hierarchical level, the higher the memory 
consumption is. 

• Set the variable register to True if the data must be registered to the 
reference atlas, False otherwise (Line 24). See Box 2 for more 
information.

• Define the time domain to which the data is normalized, termed 
‘baseline’ The baseline is calculated by taking the median of the data 
over the selected time range, resulting in a 3D matrix. The built-in 
range function allows a convenient definition of the temporal 
range, with the first and last parameters being the start and end of the 
baseline period, respectively (Line 25).

Note that the normalization is performed at the trial level if the 
averaging level is single_trial, and at the session level otherwise (each 
session is normalized independently). The choice to normalize at the 
session level is motivated by considerations of baseline consistency. 
Indeed, different sessions may have slightly different imaging condi
tions, resulting in different distributions of raw values, and thus different 
baseline values. Consequently, the average of all baselines may not be 

appropriate for normalizing individual sessions. 

• Set the variable make_reliability_maps to True to compute the reli
ability maps (Line 27). Reliability maps are defined as follows: for 
each voxel, the reliability is the ratio between i) the number of ses
sions in which this voxel is imaged, ii) the total number of sessions. 
Therefore, this index ranges from 0 (no sessions in which this voxel is 
imaged) to 1 (the voxel is imaged in all sessions).

• Set the variable remove_unreliable to a float number (Line 28) to 
ignore voxels whose reliability is below this value during the analysis 
(Fig. 2d,e). If the variable is set to None, no voxel will be excluded.

Note that stimuli cannot be averaged together during this process. 
Although not recommended, this can be achieved once data loading 
completed.

Optional parameters: 

• Set frame_removal to None if no preprocessing is desired (Line 34). 
The default preprocessing is the removal of outlier frames in each 
trial, as presented in Steps 44–45 of the protocols [8]. For an 
advanced use, it is possible to provide a custom preprocessing object 
to the variable frame_removal that will be applied on the raw trials 
before reduction. Such object will be initialized in the data loader 
and called using the __call__ method on a list of matrix containing the 
single trials. A list of matrix is expected as output.

Box 2
| Atlas extraction and variations.

Reference brain atlas. The atlas used was extracted from the Allen Mouse Brain Common Coordinate Framework (CCF v3) using the 
annotated volumes available here: http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/annotation/ 
ccf_2017/. The correspondence between anatomical regions and labels in this annotated volumes were determined using the associated 
ontology available here: http://api.brain-map.org/api/v2/structure_graph_download/1.json. We implemented the 100-µm resolution 
version of the CCF v3 since it offers the closest resolution to the fUS imaging. The atlas was further simplified by grouping the parts and 
layers of regions. It contains anatomical structures composed of multiple brain regions, each associated with its acronym and region 
number. Importantly, each brain region belongs to only one anatomical structure. The list of anatomical structures and acronyms is:  

• “CB”: Cerebellum,
• “CTXsp”: Cortical subplate,
• “HPF”: Hippocampal formation,
• “HY”: Hypothalamus,
• “Isocortex”: Isocortex,
• “MB”: Midbrain,
• “MY”: Medulla,
• “OLF”: Olfactory areas,
• “P”: Pons,
• “PAL”: Pallidum,
• “STR”: Striatum,
• “TH”: Thalamus.
By default, the non-vascularized structures including fiber tracts and ventricles have been excluded from the analyses and labelled as 
belonging to the ‘empty’ structure in the atlas. If necessary, they can be accessed and used in the analysis. The full atlas or other simplifi
cations can also be used with the software. 
Regions and structures input format. To select structures or regions of interest, use the generic format ‘<acr>, <hemisphere>’, where 
‘<acr>’ refers to the acronym of the region or the structure and ‘<hemisphere>’ to ‘L’, ‘R’, ‘LR’ for left, right and both, respectively. The list 
of regions, and associated acronyms, is included in the atlas is available in the file: atlases/atlases_lists/regions_ccf_v3_100_nolayersnoparts.txt 
on the GitHub repository. 
Data Registration. Registration is optional, and both correlation (Procedure 4) and single-voxel clustering (Procedure 5) analyses can be 
performed on unregistered data. This feature is of interest for processing data when an atlas is not yet implemented in the software or 
available from the community. However, we strongly recommend using this option for mouse datasets, as it allows for data averaging (group, 
conditions, regions), spatial quantification, and display of overlays on spatial maps. The registration procedure is implemented in the same 
way as in Brunner, Grillet et al. Brunner et al., [8] and is merely a Python translation. It is designed to work with transformation matrices 
estimated using the registration software from Brunner et al.[8]. Note that if the dataset has been registered with a reference atlas in some 
other way, it is still possible to skip the registration step and consider the data registered in the analysis workflow.
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3. Run the loading and pre-processing of the selected dataset with the 
following command (See Table 1 for Troubleshooting): 

cd <path to the examples>
python example_data_loading.py

4. Type “Y” and “Enter” to proceed to the next step if the data selection 
is satisfactory. Type “N” and “Enter” if the input must be adjusted 
(See Table 1 for Troubleshooting). 

The procedure for data loading and pre-processing is time 
consuming - from few minutes to couples of hours - as it is dependent 
on the hardware specifications, the volume of data to process and 
whether the data is to be registered or not. However, once per
formed, the time to run the following Procedures 2–5 is compara
tively very short - in the order of magnitude of seconds up to a few 
minutes.

5. Check that the following information are displayed and saved:

• In the Miniforge terminal, the name of the folder in which the ‘loa
ded_data’ is stored is displayed. It consists of the following informa
tion separated by ‘_’: 
o experiment ID,
o reduction method,
o averaging level,
o registration status: reg or noreg, for registered and non-registered 

respectively,
o a unique identifier.

Example <name of the dataset> : example_dataset_gratings_median_ 
subject_reg_cqb7h87f. 

• In the <root_folder> /loaded_data, a folder is created with a name as 
described above. It must contain the data averaged at the selected 
level, termed ‘element’, dispatched in multiple folders replicating the 
dataset hierarchy. An “info.txt” file is also generated, compiling i) the 
parameters used to generate the loaded dataset, ii) a list of the files 
included in the loading process and iii) the number of samples used 
to generate each averaged file will also be displayed in the file as 
n_samples. See Supplementary Figure 1.

• If the variable make_reliability_maps is set to True: 
o In the <root_folder> /output, a folder is created with a name as 

described above. It must contain the reliability maps. Example of 
reliability maps are depicted in Fig. 2d,e.

o A list of regions that can be excluded as the proportions of reliable 
voxels within this region is below the selected threshold (set for 
variable remove_unreliable) is available in the “info.txt” file for each 
element under the label “List of regions to exclude for region 
averaging analysis:” as shown in Supplementary Figure 1. Note 
that these regions are not automatically excluded but need to be 
specified in Step 7.

• If all information are well set, the following message is displayed in 
the Miniforge prompt: "All the data has been processed. Good luck 
with the analysis!”.

4.2. Procedure 2: Data selection - common to procedures 3–5

To get familiar on how to run data analyses with the software, follow 
the code example_data_analysis.py. It is composed of 4 steps including 
the i) dataset selection, ii) region averaging, iii) correlation, and the iv) 
single-voxel clustering analysis. 

6. Open the code example_data_analysis.py with a code editor, located in 
<path to the examples> .

7. Adjust the parameters of the data selection to process (Lines 10–35).

Required parameters: 

• Set the variable src to the path of the loaded and preprocessed dataset 
as <path to the package> /loaded_data/<name of the dataset> , 
with <path to the package> the path where the dataset is stored and 
<name of the dataset> the identifier that was output in the terminal 
during the data loading process (Line 14). 

In a code editor, check that the paths set in the code only ‘/’ as 
folder separators, as ‘\’ is a Python-reserved character.

• Set the stimuli, experimental groups and subjects to include in the 
analysis. The input format is the same for all parameters: either a list 
of the identifiers of the elements as strings (e.g.: [’mouseA’, 
‘mouseB’]) or ‘None’ if you want to include all elements (Lines 
17–20).

• Set the variable sampling_rate to the frequency (in Hz) at which the 
fUS images were acquired (Line 23).

• Set the variable registered to True if the data has been registered 
during the data loading process or to False if the data does not need to 
be registered to the reference atlas. Read the Box 2 for more infor
mation (Line 26).

• Set the variable regions_to_exclude to a list of acronyms of regions to 
exclude from the analysis (Line 29). The list is either at discretion of 
the experimenter or from the info.txt file compiling unreliable voxels 
as defined in Step 5.

8. Select one or several of the three signal processing methods allowed 
by PyfUS from this step onward by uncommenting the line - i.e., no 
‘#’ at the beginning of the line - or commenting it - i.e., add ‘#’ at the 
beginning of the line -, respectively:

Region averaging - Lines 42–59 - See Procedure 3
Correlation - Lines 67–80 - See Procedure 4
Single voxel clustering - Lines 87–129 - See Procedure 5

4.3. Procedure 3: Region-based analysis

The software documentation contains detailed information on the 
formatting requirements and the types of input that are accepted: see 
RegionAveragingAnalysis object in the region_averaging_analysis module. 

9. Adjust the parameters for region-based analysis.

Required parameters for the initialization: 

• Method plotting the barcode representation (Line 47): 
o names: if None, all the data will be displayed. If a list of strings is 

provided, only the names specified in it will be displayed.
o separate_plots: whether to make separate windows for each element 

to be plotted.
o scale: min and max of the range for the display (arguments vmin / 

vmax from plt.imshow). If set to None, auto-scale will be used.
• Method to plot the traces of individual regions (Line 49): 

o region: list of tuple(s) consisting of the acronym and hemisphere of 
the region to be plotted. See Box 2 for more information.

o scale: Min and max of the range for the display (arguments vmin / 
vmax from plt.imshow). If set to None, auto-scale is used.

10. Perform the temporal quantification. This process is optional and 
can be skipped by commenting lines 56–57.

• The method get_regions_traces of the RegionAveragingAnalysis object 
allows for extracting the temporal traces of clusters in a dictionary 
format for further processing (Line 53).

• Initialization of the object handling the temporal quantification (Line 
57). Mandatory input are a dictionary containing temporal traces 
(variable res, Line 53) and a sampling rate value (variable samplin
g_rate’, Line 23).
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Table 1 
Troubleshooting guide summarizing common issues encountered during analysis with the PyfUS software, their possible causes, and recommended solutions to ensure 
reliable post-processing and data interpretation.

Step Problem Possible reason Solution

Procedure 1: Data loading and pre-processing of input data
3 Program terminated with error message: "PermissionError: 

Acces is denied <path>"
The folder is which the data is located does not 
allow the creation of new folders.

Run Miniforge Prompt as an administrator.

Program terminated with error message: "Wrong mode 
(choose folder_tree or excel) –> failed initialization. 
Exiting…"

Unrecognized mode selected The mode selected is incorrect. 
In Code example_data_loading.py - Line 13, set the 
variable mode to folder_tree or excel

Program terminated with error message: "Unrecognized 
averaging level (choose expgroup, subject, session or all) 
–> failed initialization. Exiting…"

Unrecognized averaging level selected The averaging level selected is incorrect. 
In Code example_data_loading.py - Line 22, set the 
variable level_avg to expgroup, subject, session, single_trial 
or all.

Program terminated with error message: "Impossible to make 
reliability maps if data are not registered or if the extraction is 
done at single trial level"

The required information about data registration 
is specified incorrectly

The computation of reliability maps can not be 
executed if the level_avg is set to single_trial or if the data 
is not registered. In code example_data_loading.py: 
1) Compute the reliability maps, set the variable 
make_reliability_maps to True (Line 27). 
2) Control that the variable reduction is not set to 
single_trial (Line 21) and register is set to True (Line 24). 
If you want to work at the single trial level or don’t 
want to register the data, set the variable 
make_reliability_maps to False.

Warning message: "Expgroup <expgroup> was not found. 
Skipped.”

The requested experimental group 
<expgroup> has not been found at the specified 
location.

This is a warning message, the process continues if 
enter Y in the Miniforge prompt window or stopped if 
enter N. 
However, verify that the experimental group 
<expgroup> does exist, that the folder structure is 
implemented correctly (if applicable) and that the 
name is spelled without error.

Warning message: "Subject <subject> was not found for 
expgroup <expgroup> .”

The requested subject <subject> to load for 
experimental group <expgroup> has not been 
found at the specified location.

This is a warning message, the process continues if 
enter Y in the Miniforge prompt window or stopped if 
enter N. 
However, verify that the subject <subject> does exist, 
that the folder structure is implemented correctly (if 
applicable) and that the name is spelled without error.

Warning message: "Session <session> was not found for 
subject <subject> <expgroup> . Skipped.”

The requested session <session> for subject 
<subject> and experimental group 
<expgroup> has not been found at the specified 
location.

This is a warning message, the process continues if 
enter Y in the Miniforge prompt window or stopped if 
enter N. 
However, verify that the session <session> does exist, 
that the folder structure is implemented correctly (if 
applicable) and that the name is spelled without error.

Warning message: "Stim <stim> was not found for mouse 
<subject> <expgroup> , session <session> . Skipped.”

The requested stimulus <stim> for session 
<session> , subject <subject> and experimental 
group <expgroup> , has not been found at the 
specified location.

This is a warning message, the process continues if 
enter Y in the Miniforge prompt window or stopped if 
enter N. 
However, verify that the stimulus <stim> does exist, 
that the folder structure is implemented correctly (if 
applicable) and that the name is spelled without error.

Warning message: "No transformation matrix was found for 
<session> <subject> <expgroup> . Will be ignored during 
registration."

The transformation matrix for session 
<session> , subject <subject> and experimental 
group <expgroup> was not found while the user 
required to perform registration. The 
corresponding data will therefore be ignored 
during the process.

This is a warning message, the process continues if 
enter Y in the Miniforge prompt window or stopped if 
enter N. 
However, verify that the matrix is located in the right 
folder and that its filename fits the requirements of the 
software (see Box 1).

Program terminated with error message: "No session was 
found… please check your paths and requested sessions.”

The elements to load cannot be found at the 
specified location.

If the variable mode (Code example_data_loading.py - 
Line 13) is set to: 
- folder_tree, verify that the requested data to be loaded 
can be found at the path <root_folder> / 
<experiment_ID> and are organised following the 
folder structure defined in Box 1. 
- excel, verify that the excel sheet is located in the 
specified folder. Find a template of the excel sheet in 
Supplementary Table 1.

Program terminated with error message: "Invalid ID: 
character ’_’ detected in <elt> . Please remove this character. 
Exiting."

One or multiple ’_’ character are present in 
<elt> , which is an identifer of either 
experimental group, subject, session or stimulus.

Remove the character ’_’ from the identifier.

4 Program terminated with error message: "All trials must have 
the same lengths (issue with data <name>). Exiting"

The different trials do not have the same number 
of frames and, therefore, cannot be averaged 
together.

Remove either trials if most trials have the same 
number of frames, padding/cutting trials to have the 
same number of frames, or working at the single trial 
level.

Program terminated with error message: "Unable to allocate 
XX GiB for an array with shape XX and data type int64"

The data to be loaded was too large for the RAM 
of the computer on which the data loading was 
executed.

This error is mainly raised during trial averaging. 
Solution are either to: 
- change the reduction variable to mean if it was set to 
median (Code example_data_loading.py - Line 21), 
- change the variable level_avg to a lower level (e.g., 
from expgroup to subject - Line 22), 

(continued on next page)
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Table 1 (continued )

Step Problem Possible reason Solution

- create sub sessions to limit the amount of trials per 
session if the averaging level is session, 
- perform a temporal downsampling of the trials, 
- increase the RAM capacity of the computer.

Procedure 3: Region-based analysis
11 Program terminated with error message: "No file found… 

Check the path or the IDs you requested."
With the parameters chosen for the data 
selection, no file was found and the analysis 
cannot be conducted.

Check that the path to the loaded data is correct (i.e., 
variable src - Code example_data_analysis.py - Line 14), 
and the parameters stims (Line 17), expgroup_ID (Line 
18) and subject_ID (Line 19) correspond to existing 
loaded data.

Program terminated with error message: "The acronym you 
provided does not exist"

The acronym used to either the method 
plot_region or get_region_traces does not exist in the 
atlas.

Provide the correct acronym of interest. 
Refer to the file located at the path defined in variable 
regions_info_path (i.e., variable src - Code 
example_data_analysis.py - Line 14) to get the exhaustive 
list of acronyms available.

Program terminated with error message: "Please choose an 
hemisphere between left "L" or right "R", or set to "LR" to 
display both”

The required information about hemisphere 
selection is specified incorrectly.

The only accepted input for variable hemisphere (Code 
example_data_analysis.py - Line 54) referring to 
hemispheres is ‘L’ (left), ‘R’ (right) or ‘LR’ (for 
displaying both hemispheres)

Program terminated with error message: "You cannot use 
region averaging analysis if you did not register your data 
during data loading."

Region averaging analysis relies on the use of an 
atlas. If the data was not registered during data 
loading, the atlas and the data will not 
correspond.

Set the variable register (Code example_data_loading.py - 
Line 24) to True, if transformation matrices are 
available, otherwise estimate transformation matrices 
using the original protocol. Alternatively, you can 
perform correlation and single voxel clustering 
analyses without registration.

Procedure 4: Correlation analysis
14 Program terminated with error message: "No file found… 

Check the path or the IDs you requested."
With the parameters chosen for the data 
selection, no file was found and the analysis 
cannot be conducted.

Check that the path to the loaded data is correct (i.e., 
variable src - Code example_data_analysis.py - Line 14), 
and the parameters stims (Line 17), expgroup_ID (Line 
18) and subject_ID (Line 19) correspond to existing 
loaded data.

Program terminated with error message: "Wrong type for 
variable correlation_pattern. Should be list of tuple, np.array 
or dict[np.array]"

The required information about correlation 
pattern is specified incorrectly.

The input for variable correlation_pattern has specific 
format requirements (Code example_data_analysis.py - 
Line 69). 
Verify that the type of the input is either a list of tuples, 
a numpy array or a dictionary of numpy arrays.

Program terminated with error message: "Incorrect number of 
values for n_samples. Either None, one value or same number 
of values as data_paths."

The required information is specified incorrectly. The input variable n_samples is expected to be either 
None, an integer, or a dictionary whose number of keys 
equals the number of data paths in variable data_path 
(Code example_data_analysis.py - Line 70).

Program terminated with error message: "Please select a 
significance threshold in [0.05, 0.01, 0.001]’

The required input for significant threshold is 
specified incorrectly.

Provide the correct input threshold. 
The only accepted input for the variable 
significance_threshold is either "0.05", "0.01" or "0.001" 
(Code example_data_analysis.py - Line 71).

Program terminated with error message: "Missing keys in 
correlation_pattern. Check that you have: <keys> ."

Issue with the list of keys provided. If the variable correlation_pattern is set to a dictionary of 
array (i.e., Option 3 - Code example_data_analysis.py - 
Line 71), the input must be a dictionary whose keys 
corresponding to the element names.

Program terminated with error message: "Correlation pattern 
and data lengths do not match’.

The length of the correlation pattern does not 
match the temporal length of the data.

Verify that the length of the correlation pattern whose 
equals the length of the dataset.

Procedure 5: Single-voxel clustering
21 Program terminated with error message: "No file found… 

Check the path or the IDs you requested."
With the parameters chosen for the data 
selection, no file was found and the analysis 
cannot be conducted.

Check that the path to the loaded data is correct (i.e., 
variable src - Code example_data_analysis.py - Line 14), 
and the parameters stims (Line 17), expgroup_ID (Line 
18) and subject_ID (Line 19) correspond to existing 
loaded data.

Program terminated with error message: "Please set display 
param to ’all’ or ’mean_std’".

Error in the input provided. The only accepted input for the plot_signals method is all 
or mean_std (Code example_data_analysis.py - Line 111).

Program terminated with error message: "No list of acronyms 
provided”

The required information about regions of 
interest is missing.

A list of region acronyms must be provided if 
hemisphere, structure or multi_region are selected as 
argument of the method (Code example_data_analysis.py 
- Line 89). Example can be found in the info.txt file.

Program terminated with error message: "Unrecognized data 
selection method: choose between brainwide, structure, 
hemisphere, multi_region.”

The required information about method selection 
is missing or specified incorrectly

The valid input for the method are either brainwide, 
structure, hemisphere or multi_region (Code 
example_data_analysis.py - Line 89).

Program terminated with error message: "Not enough colors 
provided for the number of clusters.”

Difference between the number of cluster used to 
process the analysis and the number of colors set 
for clusters identification

Verify that the number of colors provided (Code 
example_data_analysis.py - Line 107) is equal or higher 
to the number of clusters (Code example_data_analysis. 
py - Line 90).

Program terminated with error message: "Acronym <acr> ’ is 
not correct. Please check the atlas."

The acronym selected is incorrect. Provide the correct acronym of interest. 
Refer to the file located at the path defined in variable 
regions_info_path (Code example_data_analysis.py - Line 
XX) to get the exhaustive list of acronyms available.

Program terminated with error message: "The structure you 
selected does not exist”

The structure selected is incorrect. The structure selected (Code example_data_analysis.py - 
Line 102) does not exist. Refer to Box 1 for the list of 
structures that can be used.

(continued on next page)
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• Call to the method for plotting violin plots of the requested metric. 
The required parameter is the name of the metric to display (Line 
58). Box 3 and the software documentation contains detailed infor
mation on the formatting requirements and the types of input that 
are accepted: see TemporalQuantification object in the Quantification 
module.

11. Perform the region-based analysis alone by commenting Pro
cedures 3 and 4 (Step 8) and then run the following code in the 
Miniforge prompt (See Table 1 for Troubleshooting):

python example_data_analysis.py
After this stage, the following displays are generated: 

• Pop-up window displaying the barcode plots of the selected 
elements.

• Pop-up window displaying the temporal traces of the selected 
regions.

• If the temporal quantification was performed, violin plots with the 
requested metrics are generated. Each dot represents one element 
(see required parameters in Step 7).

Barcode plots, temporal traces of regions of interest, and temporal 
quantification are presented in Figs. 3a to 3c, respectively. Example of 

raw output are presented in Supplementary Figure 2. Importantly, these 
figures are not automatically saved. Click on the ‘Save’ button below the 
figure to save and store it, see Supplementary Figure 3 for detailed 
Matplotlib options.

4.4. Procedure 4: Correlation analysis

The software documentation contains detailed information on the 
formatting requirements and the types of input that are accepted: see 
CorrelationAnalysis object in the Correlation_Analysis module. 

12. Adjust the parameters for performing the correlation analysis.

Required parameters for the initialization: 

• correlation_pattern (Line 69). 
o Option 1 (Default): if list of tuples, first and second elements of 

each tuple are respectively start and end of a square pulse.
o Option 2: if np.array, this array has the same size as the temporal 

dimension of data. The array is correlated with each element. 
Option 1 and 2 assume that all elements have same number of 
frames.

Table 1 (continued )

Step Problem Possible reason Solution

Program terminated with error message: "Hemispheres values 
should be either ’L’ (left), ’R’ (right) or ’LR’ (both)"

The required information about hemisphere 
selection is specified incorrectly.

The only accepted input for variable hemisphere (Code 
example_data_analysis.py - Line 99) referring to 
hemispheres is ‘L’ (left), ‘R’ (right) or ‘LR’ (for 
displaying both hemispheres)

Program terminated with error message: "All data must have 
the same number of frames. Check the different stimuli and/ 
or experimental groups. Exiting…"

The data provided to the clustering algorithm 
have different number of frames and, therefore, 
cannot be clustered together in the software.

Check that the number of frames in data across stimuli 
and experimental groups are the same, and conduct 
separate analyses for data with different numbers of 
frames.

Box 3
| Spatial and temporal quantification.

Temporal quantification. The temporal quantification consists of extracting typical metrics to characterize time series. The object expects 
as data input a dictionary whose values are time series. Both the region averaging analysis and the single-voxel clustering have methods to 
get data in such format. The software documentation contains detailed information on the formatting requirements and the types of input 
that are accepted, see TemporalQuantification object in the Quantification module. 
The current metrics are:  

● ‘Peak amplitude’, the maximum amplitude of the time series.
● ‘AUC’, the area under the curve, computed using the Simpson approximation.
● ‘Time to peak (s)’, the time in seconds from the beginning of the signal to reach the maximum value in the time series.
● ‘FWHM (s)’, the width between the first and last points above half of the maximum value.
● ‘Time to half max (s)’, the time in seconds from the beginning of the signal to reach the first value above half the maximum value.
Please note that these values can be affected if the signal has multiple peaks. 
Spatial quantification. The spatial quantification consists of characterizing the spatial distribution of groups (significantly correlated 
voxels, clusters). The object expects as data input a dictionary whose values are spatial maps. Both the correlation analysis (Procedure 4) and 
the single voxel clustering analysis (Procedure 5) have methods to get data in such a format. Note that the data must be registered to compute 
these quantifications. A group of voxels present in a spatial map, such as voxels belonging to cluster A or significantly correlated with a 
pattern, is called a set. The software documentation contains detailed information on the formatting requirements and the types of input that 
are accepted, see SpatialQuantification object in the Quantification module. 
The current metrics are:  

● Quantification per set: print the proportion of voxels in each structure per set (function print_quantification_per_set),
● Quantification per hemisphere: print the composition of a hemisphere in terms of sets (function print_quantification_per_hemisphere),
● Quantification per structure: print the composition of a structure in terms of sets (function print_quantification_structure),
● Quantification per region: print the composition of a region in terms of sets (function print_quantification_region).
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o Option 3: if a dictionary containing np.arrays, keys must match the 
element names (check the info file, key are before n_samples) and 
arrays should have the same length as their associated data.

• n_samples: Number of trials used for computing the data reduction 
(Line 70). Find this value in the ‘info.txt’ file, located where the 
processed data is stored (see Supplementary Figure 1). Set to None if 
not applicable. 
o set to None, no z-score map is computed.
o if int, assumes that all data have the same number of samples.
o if dict, keys should match the data names.

• significance_threshold: The statistical significance threshold used for 
the computation of the z-score maps (Line 71). Set to 0.05, 0.01 or 
0.001.

13. Perform the spatial quantification. This process is optional and 
can be skipped by commenting Lines 73–78.

• The method process of the object CorrelationAnalysis allows for 
extracting the cluster maps of target elements in a dictionary format 
for further processing (Line 73).

• Initialization of the object handling the spatial quantification (Line 
77). Mandatory inputs are a dictionary containing spatial maps 
(variable res, Line 74), the path to the atlas to be used (variable 
atlas_path, Line 35) and the associated regions information path 
(regions_info_path, Line 34).

• The regional quantification is called with the method print_quantifi
cation (Line 78). The required arguments are the acronym of the 
region of interest and the hemisphere (e.g., ‘VISp’, ‘L’). Box 3 and the 
software documentation contains detailed information on the 
formatting requirements and the types of input that are accepted: see 
SpatialQuantification object in the quantification module.

14. Perform the correlation analysis alone by commenting Proced
ures 3 and 5 (see Step 8) and then running (See Table 1 for 
Troubleshooting):

python example_data_analysis.py
After this stage, the following displays are generated: 

• Pop-up window displaying the correlation maps of the selected ele
ments, and, if applicable, the associated z-score maps.

Fig. 3. Visualization and quantification after regional averaging from Procedure 3, a, Barcode visualization of temporal traces of hemodynamic responses (ΔI/I in %) 
to drifting grating stimuli (orientation 0◦) in individual brain regions after regional averaging based on the reference atlas. The left panel shows the barcode for a 
single imaging session, the middle panel for 3 sessions from the same mouse (average of 5 and 15 trials, respectively), and the right panel for 9 sessions from 3 
different mice (average of 45 trials). Vertical black lines: Start and end of the visual stimulation. Brain structures imaged are color-coded (Dark blue: Cerebellum/CB; 
Light Blue: Cortical subplate / CTXsp; Orange: Hippocampal Formation / HPF; Light green: Hypothalamus / HY; Red: isocortex / iCTX; Purple: Midbrain / MB; 
Brown: Medulla / MY; Light brown: Olfactory areas / OLF; Pink: Pons / P; Grey: Pallidum / PAL; Dark green: Striatum / STR; Cyan: Thalamus / TH) and listed in 
Fig. 3 – Supplement Table 1. Black arrowheads point brain regions of interest displayed in b. ACAd: dorsal part of the anterior cingulate area; RSPd: dorsal part of the 
retrosplenial area; VISli: laterointermediate area of the visual area; SCs: sensory related area of the superior colliculus; LGd: dorsal part of the lateral geniculate 
complex. b, Set of temporal traces of hemodynamic responses (ΔI/I in %; mean±sd; n = 3 mice, 3 sessions/mouse, 5 trials/session) to drifting grating stimuli 
(orientation 0◦; vertical gray band) in five brain regions after regional averaging: ACAd, RSPd, VISli, SCs, and LGd (from top to bottom). Traces are color-coded 
according to the color of the brain structures as in (A). c, Example of quantification metrics calculated from the time course of a selected region of interest 
(VISli) of the 3 imaged mice (black dots). Full width at half maximum (FWHM), time to half maximum (THM), and time to peak (TTP) in seconds; area under the 
curve (AUC) in arbitrary units; and peak amplitude (PA) as change in signal intensity (ΔI/I in %). The vertical black line denotes the mean and vertical dotted black 
lines the 25/75 % quartiles.
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• If the spatial quantification was performed, the quantifications will 
be printed in the Miniforge terminal. In the column set_ID, 0 refers to 
non-significantly correlated voxels and 1 to significantly correlated 
voxels, respectively.

Correlation map, z-score map and spatial quantification are pre
sented in Figs. 4a to 4c, respectively. Example of raw output are pre
sented in Supplementary Figure 4. Importantly, these figures are not 
automatically saved, thus use the ‘Save’ button below the figure to save 
and store it (see Fig. 3-figure supplement 2).

4.5. Procedure 5: Single-voxel clustering

The software documentation contains detailed information on the 
formatting requirements and the types of input that are accepted: see 
SingleVoxelClustering object in the clustering module. 

15. Adjust the parameters for performing the single-voxel clustering 
analysis.

Required parameters for the initialization of the single-voxel clus
tering object: 

• Select the method to determine voxels included in the clustering 
process (method in Line 89): 
○ volume, voxels from the whole volume. For this option, the regis

tration of the data is not required.
○ hemisphere, voxels from one or the two hemispheres (Fig. 5a).
○ structure, voxels from a selected anatomical group (Fig. 5b).
○ multiregion, voxels from a given set of regions (Fig. 5c).

• Select the number of clusters to process the data (n_clusters in Line 
90).

• Select the feature extraction method (fe_method in Line 91; see Box 4
for further details): 
○ pca, Principal Component Analysis,
○ ica, Independent Component Analysis,
○ nmf, Non-negative Matrix Factorization,
○ custom, Custom feature extractors.

• Select the feature extraction parameter (fe_params in Line 92). 
Feature extraction methods are implemented using the scikit-learn 
package. See Box 4 for details about feature extraction.

• Select a noise rejection threshold (noise_th in Line 93). Voxels for 
which the temporal standard deviation is higher than the threshold 
are set to 0. If set to None, no voxel is rejected.

16. Select the process to run by commenting all the lines but the one 
of interest:

• brainwide in Line 98. No argument is expected for the process method.
• hemisphere in Line 100. Set as argument of the function ‘L’, ‘R’ or ‘LR’ 

for left, right and both hemispheres, respectively.
• structure in Line 102. Set as argument of the function a list of tuples 

(<structure>, <hemisphere>), where <structure> refers to the 
acronym of the structure (see Box 2) and <hemisphere> to ‘L’ or ‘R’ 
for left and right hemisphere, respectively.

• multi_region in Line 104. Set as argument a list of tuples in the format 
(<region>, <hemisphere>), where <region> refers to the acronym 
of the region (see Box 2) and <hemisphere> to ‘L’ or ‘R’ for left and 
right hemisphere, respectively.

Fig. 4. Visualization and quantification after correlation from Procedure 4. a, Brain-wide color-coded correlation map (r2) of the average of 3 imaging sessions from a 
single mouse computed with square shape of the stimulation pattern. In black, the outline of the reference atlas. The bottom panel shows a zoom in of 3 coronal 
planes. D, dorsal; L, left. b, Z-score map depicting all the voxels activated with a level of significance > 0.001. In red, the outline of the reference atlas. c, Distribution 
of voxel activated from the z-score map in the brain: isocortex (iCTX), midbrain (MB), hippocampal formation (HPF), thalamus (TH), striatum (STR) and 
other regions.
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17. Set a new colormap by changing the variable custom_cmap (Line 
107). Accepted values are either string corresponding to Mat
plotlib colormap (e.g., jet) or list of color in the RGBA format. Set 
the variable to None to use the default colormap.

18. Select the display mode of the time traces associated with the 
clusters (Line 110). Set display as all to plot the temporal traces of 
all voxels or mean_std’ to plot the mean and standard deviation 
instead. Line 112 calls the method for displaying the cluster maps 
and no argument is required. Check the documentation of these 
methods for further details (object SingleVoxelClusteringWrapper, 
clustering module).

19. Perform the spatial quantification. This process is optional and 
can be skipped by commenting Lines 115–120:

• The method get_cluster_maps of the SingleVoxelClusteringWrapper ob
ject allows for extracting the cluster maps of target elements in a 
dictionary format for further processing (Line 116).

• Initialization of the object handling the spatial quantification (Line 
119). Mandatory inputs are a dictionary containing spatial maps 
(variable res), the path to the atlas to be used (variable atlas_path, line 
35) and the associated regions information path (regions_info_path, 
Line 34).

• The regional quantification is called with the method print_quantifi
cation (Line 120) The required arguments are the acronym of the 
region of interest and the hemisphere (e.g.: ‘VISp’, ‘L’). Box 3 and the 
software documentation contains detailed information on the 
formatting requirements and the types of input that are accepted: see 
SpatialQuantification object in the Quantification module.

20. Perform the temporal quantification. This process is optional and 
can be skipped by commenting Lines 123–127.

• The method get_signals of the SingleVoxelClusteringWrapper object 
allows for extracting the temporal traces of clusters in a dictionary 
format for further processing (Line 123).

• Initialization of the object handling the temporal quantification (Line 
126). Mandatory input are a dictionary containing temporal traces 
(variable res in Line 123) and a sampling rate value (variable sam
pling_rate in Line 23).

• Call to the method for plotting violin plots of the requested metric. 
The required parameter is the name of the metric to be displayed 
(Line 127). Box 3 and the software documentation contains detailed 
information on the formatting requirements and the types of input 
that are accepted: see TemporalQuantification object in the Quantifi
cation module.

21. Perform the single-voxel clustering analysis alone by commenting 
Procedures 3 and 4 (see Step 8) and then running (See Table 1 for 
Troubleshooting): python example_data_analysis.py

After this stage, the following displays are generated: 

• Pop-up window displaying the spatial maps associated with the 
selected elements.

• Pop-up window displaying the temporal traces associated with each 
cluster.

• If the spatial quantification was performed, the quantifications will 
be printed in the terminal. In the column set_ID, value 0 correspond to 
non-clustered voxels and values 1 to n_clusters to the cluster identi
fiers, ordered in the same order as the displays.

• If the temporal quantification was performed, violin plots with the 
requested metrics are generated. Each dot represents one element 
(see required parameters in Step 7).

Spatial clustered maps, temporal traces per cluster and spatial 

Fig. 5. Visualization and quantification after single-voxel clustering from Procedure 5. Color-coded single-voxel clustering using 4 clusters (left) and corresponding 
temporal traces of the voxels allocated to the cluster (mean±sd; right) for the imaged mouse brain (n = 3 mice; a), for the cortex (n = 3 mice; b) and for a set of 
selected regions of interest (n = 1 mouse; c). D, dorsal; L, left. d, Example of quantification metrics calculated from the temporal traces of the 4 color-coded clusters 
(C#1 to C#4) of the 3 imaged mice (black dots). Left; Peak amplitude as change in signal intensity (ΔI/I in %). Right; Full width at half maximum in seconds. The 
vertical black line denotes the mean and vertical dotted black lines the 25/75 % quartiles. Quantification refers to temporal traces extracted in c. e, Distribution of 
voxels in the four clusters into the VISli and the SSp-bfd regions of the 3 imaged mice (black dots). The vertical black line denotes the mean and vertical dotted black 
lines the 25/75 % quartiles. Quantification refers to temporal traces extracted in c.

Box 4
| Clustering hyperparameters.

The single-voxel clustering approach consists of two stages: feature extraction and clustering. 
Feature extraction. This stage is key, as the quality of the feature subspace largely determines the quality of the clustering process. In its 
current version, the PyfUS software offers standard options including Principal Component Analysis (PCA), Independent Component 
Analysis (ICA) and Non-Negative Matrix Factorization (NMF). Read documentation for PCA, FastICA and NMF in the decomposition 
module at: https://scikit-learn.org/stable/user_guide.html. The default choice is PCA, which has given satisfactory results throughout our 
testing. However, these options are limited in terms of representational power, whereas the interesting/discriminative information about 
fUS signals often lies in their shapes over time. Thus, deep learning approaches may be relevant in this context, especially convolutional 
autoencoders that can efficiently encode the shape information. In this regard, the software allows the use of user-defined feature 
extractors. Refer to the documentation of the FeatureExtractor object in the features_extraction module. 
Clustering. The clustering algorithm chosen for single-voxel clustering is K-Means because of its simplicity and computational efficiency. 
Other clustering methods can be used in the software, but as detailed above, we assume that the feature extraction is of greater consequence 
than the choice of the algorithm. The main hyperparameter to choose is the number of clusters. Unfortunately, clustering quality metrics 
under unknown ground truth, such as the silhouette coefficient, are often biased towards convex clusters. Depending on the feature 
extraction process and the resulting subspace structure, the quantitative and qualitative (expert-based) judgments of the correct number of 
clusters may differ significantly. Pending a better method, we propose a trial-and-error approach that takes advantage of the speed of 
clustering (a few seconds).
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quantification are presented in Figs. 5a to 5e, respectively. Example of 
raw output are presented in Supplementary Figure 5. Importantly, these 
figures are not automatically saved, thus use the ‘Save’ button below the 
figure to save and store it (see Fig. 3-figure supplement 2).

5. Timings

The timing expressed along the procedure are dependent on the 
hardware specifications and the volume of data to be processed as 
detailed in the Equipment section. The provided timing information is 
based on the example dataset of ~10 Gb and a machine with 64 Gb of 
RAM equipped with a Intel Xeon E5-2620 v4 CPU (2.10 GHz). The 
actual timing depends on the resources available, the size of the input 
dataset and the parameters used for each step. 

• Procedure 1: Data loading and pre-processing. Total running time is 
~30–60 mins, during which most of the time is spent on Step 4 for 
averaging and registering the selected data.

• Procedure 2: Data selection - Common to Procedures 3–5. Total 
running time is less than a minute.

• Procedure 3: Region averaging analysis. Total running time is less 
than a minute, depending on the selected parameters and data 
processed.

• Procedure 4: Correlation analysis. Total running time is less than a 
minute, depending on the selected parameters and data processed.

• Procedure 5: Single-voxel clustering analysis. Total running time is 
less than a minute, depending on the selected parameters and data 
processed.

6. Expected results

The work presents a flexible, reliable and open-source software for 
analyzing brain-activity collected by any fUS system with a full access 
and control over signal processing and visualization. We provide specific 
examples of data analysis performed on data displaying evoked brain 
activity in response to sensory stimuli.

The PyfUS software was designed with flexibility as a core principle. 
While it was developed for use with volumetric images acquired with a 
matrix array transducer, it can also be applied to single-plane imaging 
with a linear transducer. The flexibility of the software also allows it to 
be used with all mammalian models, even under pathological conditions 
and without the direct need of digitalized reference atlases, with a wide 
variety of experimental procedures.

Another key aspect of the software is its ability to provide users with 
fast and easy access to 3 complementary signal processing strategies: the 
region-based temporal analysis obtained after registration to a reference 
atlas (Procedure 3 - Fig. 3), the spatial visualization of brain activity 

Fig. 6. Expected outcome from different stimuli, a, Comparison of the single-voxel clustering analysis for two drifting grating stimulus with different orientation i.e., 
0◦(left) and 180◦(right) using 4 clusters (n = 3 mice, 25 sessions, 125 trials per condition). D, dorsal; L, left. b, Corresponding temporal traces of the voxels allocated 
to the 4 clusters (mean±sd) for the left hemisphere. c, Difference of distribution of the voxels in the 4 clusters into the ACAd, LGd, RSPd and VISp regions (from left to 
right) based on the orientation i.e., 0◦(top) and 180◦ (bottom).
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using the correlation map (Procedure 4 - Fig. 4) and the single-voxel 
clustering that combines both the spatial and temporal analysis at the 
smallest scale allowed by fUS measurements (Procedure 5 – Figs. 5 and 
6).

While region averaging and correlation analyses can produce inter
pretable visualizations quickly, they have several limitations. Atlas- 
based region averaging masks spatial variations in hemodynamic ac
tivity, resulting in a mixture of non-active and active voxels, leading to 
an underestimation of true activity or signals arising from different 
neural processing, and thus to potential misinterpretation. On the other 
hand, the outcome of correlation-based analyses is determined by the 
choice of temporal window, which is biased by expectations on evoked 
responses and potentially excludes pre-stimulus (e.g., task preparation, 
stimulus anticipation) or post-stimulus activities (e.g., non-aligned 
behavior, delayed neuronal response). Furthermore, it does not reflect 
the temporal dynamics of the fUS signals, since it evaluates how well the 
signal fits a square pulse without regard for the differences between 
time-series.

Therefore, there was a need for a new approach that complements 
region averaging and correlation-based analysis by exploiting both the 
high spatial and temporal resolution of fUS data in an unbiased manner. 
We introduced single-voxel clustering to fill this need. The spatio- 
temporal clustering is a subfield of data mining that has become popu
lar in neuroscience, especially in large-scale functional imaging, due to 
its exploratory power and broad applicability [15,36,41]. The benefits 
of this approach include the limited number of assumptions made upon 
the hemodynamic response properties while avoiding the bias induced 
by the stimulus pattern. Furthermore, recent research has highlighted 
that the spread of the hemodynamic activity is of 1–2 voxels at the edge 
of the active areas, thereby justifying the use of small groups of voxels in 
the analysis process [21]. Finally, the method allows for a convenient 
comparison across stimuli along with straighforward quantifications as 
depicted in Fig. 6.a and b and c respectively. Here, one can directly 
compare the effect of the orientation of the drifting grating stimulus on 
the recruitment of some brain regions, and especially integrative ones 
like the anterior cingulate cortex (ACAd), and the retrosplenial cortex 
(RSP). Like other analytical approaches, single-voxel clustering has 
limitations, including sensitivity to the choice of its hyperparameters 
and the complexity of its readout.

From a more conceptual standpoint, there is no such thing as a 
perfect analysis method, since every dataset has its own specificity. We 
therefore encourage users to try multiple analyses and vary hyper
parameters to obtain the broadest possible view on the content of their 
data. For instance, a barcode generated by the region analysis procedure 
can be used to identify regions requiring further investigation at single 
voxel scale using the clustering approach, which can also be used to 
refine the barcode view in large regions such as the caudate putamen.

Regarding potential extensions, providing access to other atlases 
would be a valuable addition. Indeed, fUS has been applied to multiple 
animal models, including rats [20,39,40,6], ferrets[23,3], and 
non-human primates [16,28,37], for which atlases have been created 
[10,18,19,38]. On another aspect, there is limited research on data 
preprocessing and no consensus on a standard procedure. This work did 
not delve deeply into this topic, but the software has been designed to 
allow the easy implementation and testing of new preprocessing ap
proaches. Finally, as mentioned in the related box, there is an essential 
work to conduct on the feature extraction for the single-voxel clustering 
approach. Indeed, if the PCA has provided satisfactory results, resulting 
subspaces often have a ball-like structure that is not ideal for the clus
tering. Therefore, it would be beneficial to explore more advanced 
methods that utilize non-linearities, such as convolutional autoencoders, 
to extract features from the fUS signals.

In conclusion, this work and software are part of an initiative to 
promote the adoption of the fUS technology through access to state-of- 
the-art procedures for data acquisition and analysis. Additionally, we 
aim to create a community around the development of data analysis 

techniques. This is made possible by the modular architecture and 
extensive documentation of the software. In line with this objective, a 
developer’s guide will be made available, with the aim of not only 
facilitating the use of the software but also encouraging contributions to 
its ongoing development.

Code availability

PyfUS software can be found and downloaded from the GitHub re
pository (https://github.com/OpenfUS/PyfUS). The software can be 
freely used for educational and research purposes.
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